Islands of inversion and other challenges to the no-core shell model

Calvin W. Johnson, SDSU
+ Mark Caprio, Notre Dame

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272 "

Islands of inversion and other challenges to the no-core shell model

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272"

Islands of inversion and other challenges to the no-core shell model

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272"

Configuration-interaction shell model

Matrix formalism: expand in some (many-body) basis $\mathbf{H}|\Psi\rangle=E|\Psi\rangle$

$$
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle
$$

Disadvantage:

- not size-extensive, basis grow exponentially

Advantages:

- Excited states easy to generate
- Direct access to wave functions allows for detailed analysis

Outline of talk

- How to x-ray a wave function
- The challenge of intruders
- ${ }^{11} \mathrm{Li} \&{ }^{29} \mathrm{~F}$ as case studies
- Possible paths forward

Modern many-body calculations

No-core shell model: in harmonic oscillator basis, "all" particles active (up to $\mathrm{N}_{\text {max }}$ h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, HOBET, etc.) fit to few-body data
e.g. p-shell nuclides up to $\mathrm{N}_{\text {max }}=10 \ldots 22$

The NCSM has been a triumph!

Maris et al PRC 90, 014314 (2014)
${ }^{12} \mathrm{C}$ with chiral $2+3$ body forces

We can reproduce experimental data! such as the g.s. band of ${ }^{12} \mathrm{C}$

But M-scheme dimensions are huge-into the tens of billions*! How can we possibly 'understand' them?
*See Anna McCoy's talk for a possible record, M-scheme dimension ~ 35 billion!

*See Anna McCoy's talk for a possible record, M-scheme dimension ~ 35 billion!

We can x-ray the wave functions with math!

See also talks by Caprio and McCoy, up next!
PAINT Workshop @ TRIUMF, Feb 27, 2024

Casimir

Casimir

$\hat{C}|z, \alpha\rangle=z|z, \alpha\rangle$

The best known Casimir is J^{2}, which has eigenvalues $j(j+1)$

Casimir

$\hat{C}|Z, \alpha\rangle=z|Z, \alpha\rangle$

Another is Elliott's representation of an $\operatorname{SU}(3)$ Casimir:

$$
\hat{C}_{S U(3)}=\vec{Q} \cdot \vec{Q}-\frac{1}{4} \vec{L}^{2}
$$

For this 2-body $\operatorname{SU}(3)$ Casimir, the eigenvalue $z=\lambda^{2}+\lambda \mu+\mu^{2}+3(\lambda+\mu)$,
 where λ, μ label the irreps

Casimir

$\hat{C}|z, \alpha\rangle=z|z, \alpha\rangle$

If the Casimir(s) commute(s) with the Hamiltonian, $[\hat{H}, \hat{C}]=0$
then the Hamiltonian is block-diagonal in the irreps (irreducible representation)

This is known as dynamical symmetry

A key idea: A Casimir can be used to divide up a Hilbert space into subspaces, labeled by eigenvalues
even if the Casimir does not commute with the Hamiltonian

Casimir

$$
\hat{C}|z, \alpha\rangle=z|z, \alpha\rangle
$$

For some wavefunction | $\Psi>$, we define the fraction of the wavefunction in an irrep

$$
F(z)=\sum_{\alpha}|\langle Z, \alpha \mid \Psi\rangle|^{2}
$$

${ }^{20} \mathrm{Ne}$

SAN Diego State UNIVERSITY

This can be done efficiently using a variant of the Lanczos algorithm: CWJ, PRC 91, 034313 (2015)

SAN DIEGO STATE UNIVERSITY

By looking at the grouptheoretical decomposition, we can even show that the valence-space empirical and ab initio multi-shell wave functions have similar structure!

Maris et al PRC 90, 014314 (2014)
${ }^{12} \mathrm{C}$ with chiral $2+3$ body forces

The Hoyle state in ${ }^{12} \mathrm{C}$ is a problem!

Haxton and Johnson, PRL 65, 1325 (1990)

There's a similar state in ${ }^{16} \mathrm{O}$

There's a similar state in ${ }^{16} \mathrm{O}$

One can think of these as alpha-cluster states

There's a similar state in ${ }^{16} \mathrm{O}$

One can think of these as alpha-cluster states

Or as np-nh states

Haxton and Johnson, PRL 65, 1325
(1990)

Brown and Green, Nucl. Phys. 75, 401 (1966)

Haxton and Johnson, PRL 65, 1325
(1990)

Haxton and Johnson, PRL 65, 1325
(1990)

Haxton and Johnson, PRL 65, 1325
(1990)

${ }^{16} \mathrm{O} \mathrm{B}(\mathrm{GT})$ experimentally measured via (n, p) at TRIUMF! San Diego State Hicks et al PRC 43, 2554 (1991)

UNIVERSITY

One can probe the mixing of np-nh in ${ }^{16} \mathrm{O}$ through Gamow-Teller
${ }^{16} \mathrm{O} \mathrm{B}(\mathrm{GT})$ experimentally measured via (n, p) at TRIUMF! San Difgo State Hicks et al PRC 43, 2554 (1991)

One can probe the mixing of np-nh in ${ }^{16} \mathrm{O}$ through Gamow-Teller

These cluster states are not easy to reproduce in the NCSM.
They may require as much as 30 hw excitations in a h.o. basis (T. Neff), yet they appear low in the spectrum

$$
\text { T. Neff, J. Phys. Conf. Ser. } 403012028 \text { (2012) }
$$

Journal of Physics: Conference Series 403 (2012) 012028

Figure 6. Decomposition of the ${ }^{12} \mathrm{C}$ ground state and the Hoyle state into $N \hbar \Omega$ components for oscillator constants of 20 MeV (left) and 12 MeV (right).

Fermionic molecular dynamics calculation with Argonne V18 potential

${ }^{12} \mathrm{C}$ g.s. (fermionic molecular dynamics FMD calculation)

${ }^{12} \mathrm{C}$ Hoyle state main FMD configurations.

See also: S. Shen, D. Lee, et al, Nat. Commun. 14 (2023) 2777 (arXiv:2202.13596) for similar results on the lattice

${ }^{12} \mathrm{C}$ Hoyle state main FMD configurations.

So basically we have intruders!

One can phenomenologically reproduce spectra for example, by adjusting single particle energies

${ }^{16} \mathrm{O}$ Haxton \& CWJ, PRL 65 (1990) 1325

One can phenomenologically reproduce spectra for example, by adjusting single particle energies

One can phenomenologically reproduce spectra or by adjusting the strength of an $\mathrm{SU}(3)$ Casimir

Expt NCSpM
Expt. NCSpM
Expt. NCSpM

$$
\begin{aligned}
H_{\gamma}= & \sum_{i=1}^{A}\left(\frac{\mathbf{p}_{i}^{2}}{2 m}+\frac{m \Omega^{2} \mathbf{r}_{i}^{2}}{2}\right)+\frac{\chi}{2} \frac{\left(e^{-\gamma Q \cdot Q}-1\right)}{\gamma} \\
& -\kappa \sum_{i=1}^{A} l_{i} \cdot s_{i} .
\end{aligned}
$$

Expt NCSpM
Expt. NCSpM
Expt. NCSpM

Related to cluster states, islands of inversions and halo nuclei
 form a similar challenge to standard shell-model pictures

SAN Diego State UNIVERSITY

Figure:
Alex Brown

SAN Diego State UNIVERSITY

Figure:
Alex Brown

SAN Diego State
UNIVERSITY

Figure:
Alex Brown

CASE STUDY: ${ }^{11}$ LI

${ }^{11} \mathrm{Li}$ makes for an excellent case study:

- Example of "island of inversion"
- Halo or extended state; large deformation
- Small enough to be tackled numerically
- Testbed for techniques

CASE STUDY: ${ }^{11}$ LI

One proton outside a filled shell

+ filled neutron shell

One proton outside a filled shell

+ neutron $2 \mathrm{p}-2 \mathrm{~h}$

"island of inversion"

CASE STUDY: ${ }^{11}$ LI

${ }^{11} \mathrm{Li}$ makes for an excellent case study

3/2- g.s. is a halo state and on an island of inversion

CASE STUDY: ${ }^{11}$ LI

CASE STUDY: ${ }^{11}$ LI

J Diego State JNIVERSITY

CASE STUDY: ${ }^{11} \mathrm{LI}$

CASE STUDY: ${ }^{11}$ LI

"intruder"
CASE STUDY: ${ }^{11}$ LI

CASE STUDY: ${ }^{11}$ LI

CASE STUDY: ${ }^{11}$ LI

j Diego State JNIVERSITY

CASE STUDY: ${ }^{11}$ LI

v Diego State UNIVERSITY

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{11}$ LI

\checkmark Diego State UNIVERSITY

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{11}$ LI

v Diego State UNIVERSITY

Mark Caprio

CASE STUDY: ${ }^{11}$ LI

」 Diego State JNIVERSITY

CASE STUDY: ${ }^{11}$ LI

」 Diego State JNIVERSITY

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{11}$ LI

this also agrees well
$\mathrm{N}_{\text {max }}$ with experiment

CASE STUDY: ${ }^{11}$ LI

J DIEGO State JNIVERSITY

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{11}$ LI

J DIEGO STATE JNIVERSITY

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{11}$ LI

We can use the shell model to dissect the wavefunctions

CASE STUDY: ${ }^{11}$ LI

more deformed

Grouptheoretical
Decomposition

Elliot SU(3)

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{11}$ LI

Grouptheoretical Decomposition

Symplectic Sp(3,R)

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{11}$ LI

more deformed

Grouptheoretical
Decomposition
Symplectic Sp(3,R)

CASE STUDY: ${ }^{29} \mathrm{~F}$

${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$

One proton outside a filled shell

+ filled neutron shell

One proton outside a filled shell

+ neutron 2 p-2h

"island of inversion"

CASE STUDY: ${ }^{29} \mathrm{~F}$

${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY
${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ${ }^{29} \mathrm{~F}$

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY

Grouptheoretical
Decomposition
Symplectic Sp(3,R)

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY

$\mathrm{N}_{\max }=4$, natural orbitals
Grouptheoretical decomposition

SU(4)

CASE STUDIES: ${ }^{11}$ LI, ${ }^{29}$ F

I suggest ${ }^{11} \mathrm{Li},{ }^{29} \mathrm{~F}$ as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

CASE STUDIES: ${ }^{11}$ LI, ${ }^{29} \mathrm{~F}$

I suggest ${ }^{11} \mathrm{Li},{ }^{29} \mathrm{~F}$ as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

Note: these are technically closed-shells +1 nuclides.

For example, does coupled-clusters with a spherical reference eventually regain the deformation?
Or does one need a deformed reference state?

Symplectic Sp(3,R) Symmetry

Collectivity features

PAINT Workshop @ TRIUMF, Feb 27, 2024

Group theory may be a natural framework for cluster physics

Kravvaris \& Volya, PRL 119, 062501 (2017)

FIG. 1. Spectrum of RGM Hamiltonian with the SRG softened N3LO interaction ($\lambda=1.5 \mathrm{fm}^{-1}$) and $\hbar \Omega=25 \mathrm{MeV}$ for a 2α system. Zero on the energy scale is set by the $\alpha+\alpha$ breakup threshold of the corresponding model. Levels are marked by spin and parity and by an absolute binding energy in units of MeV . The α binding energies for the $\alpha[0]$ and $\operatorname{NCSM}(\alpha[4])$ calculations are -26.08 and -28.56 MeV , respectively. The inset shows the relative wave function of the two α clusters.

Summary

SAN DIEGO STATE
The no-core configuration-interaction shell model remains useful.

But 'intruder' states are very challenging! They are highly deformed and require large model spaces

Summary

...but at times the correlation energy in these states bring them low in the spectrum (or even to the ground state)

The no-core configuration-interaction shell model remains useful.

But 'intruder' states are very challenging! They are highly deformed and require large model spaces

We can use the shell-model to 'x-ray' the problems....

...and maybe find a way forward!

Summary

In particular we suggest ${ }^{11} \mathrm{Li}$
... and ${ }^{29} F$...
...as model cases to stress-test our many-body methods (CC, IMSRG, Sp(3,R), GCM, etc.)

Let the computing begin!

