

Islands of inversion and other challenges to the no-core shell model

Calvin W. Johnson, SDSU

+ Mark Caprio, Notre Dame

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272 "

Islands of inversion and other challenges to the no-core shell model

+ Mark Caprio, Notre Dame

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272 "

Islands of inversion and other challenges to the no-core shell model

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272 "

Configuration-interaction shell model

Matrix formalism: expand in some (many-body) basis $\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$

$$\begin{split} |\Psi\rangle &= \sum_{\alpha} c_{\alpha} |\alpha\rangle \qquad \qquad H_{\alpha\beta} = \langle \alpha | \hat{\mathbf{H}} | \beta \rangle \\ &\sum_{\beta} H_{\alpha\beta} c_{\beta} = E c_{\alpha} \end{split}$$

Disadvantage:

• not size-extensive, basis grow exponentially

Advantages:

- Excited states easy to generate
- Direct access to wave functions allows for detailed analysis

Outline of talk

- How to x-ray a wave function
- The challenge of intruders
- ¹¹Li & ²⁹F as case studies

• Possible paths forward

No-core shell model: in harmonic oscillator basis, "all" particles active (up to N_{max} h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, HOBET, etc.) fit to *few-body* data

e.g. *p*-shell nuclides up to $N_{max} = 10 \dots 22$

The NCSM has been a triumph!

Maris et al PRC 90, 014314 (2014)

¹²C with chiral 2+3 body forces

We can reproduce experimental data! such as the g.s. band of ¹²C

But M-scheme dimensions are huge—into the tens of billions*! How can we possibly `understand' them?

*See Anna McCoy's talk for a possible record, M-scheme dimension ~ 35 billion!

But M-scheme dimensions are huge—into the tens of billions*! How can we possibly `understand' them?

Richard Hamming: *The purpose of computing is insight, not numbers.*

*See Anna McCoy's talk for a possible record, M-scheme dimension ~ 35 billion!

We can x-ray the wave functions *with math!*

Use eigenvalues of Casimir operators to label subspaces ("irreps")

See also talks by Caprio and McCoy, up next!

 $\hat{C}|z,\alpha\rangle = z|z,\alpha\rangle$

z (eigenvalue) labels the subspace α indexes all the states in the subspace (same value of z)

 $\hat{C}|z,\alpha\rangle = z|z,\alpha\rangle$

The best known Casimir is J^2 , which has eigenvalues j(j+1)

 $\hat{C}|z,\alpha\rangle = z|z,\alpha\rangle$

Another is Elliott's representation of an SU(3) Casimir:

$$\hat{C}_{SU(3)} = \vec{Q} \cdot \vec{Q} - \frac{1}{4}\vec{L}^2$$

For this 2-body SU(3) Casimir, the eigenvalue $z = \lambda^2 + \lambda \mu + \mu^2 + 3(\lambda + \mu)$, where λ , μ label the irreps

 $\hat{C}|z,\alpha\rangle = z|z,\alpha\rangle$

If the Casimir(s) commute(s) with the Hamiltonian, $\begin{bmatrix} \hat{H}, \hat{C} \end{bmatrix} = 0$ then the Hamiltonian is block-diagonal

in the *irreps* (irreducible representation)

This is known as *dynamical symmetry*

A key idea: A Casimir can be used to divide up a Hilbert space into subspaces, labeled by eigenvalues

even if the Casimir does not commute with the Hamiltonian

 $\hat{C}|z,\alpha\rangle = z|z,\alpha\rangle$

For some wavefunction $| \Psi \rangle$, we define the *fraction of the wavefunction in an irrep*

$$F(z) = \sum_{\alpha} \left| \left\langle z, \alpha \right| \Psi \right\rangle \right|^2$$

This can be done efficiently using a variant of the Lanczos algorithm: CWJ, PRC **91**, 034313 (2015)

²⁰Ne

By looking at the grouptheoretical decomposition, we can even show that the valence-space empirical and *ab initio* multi-shell wave functions have similar structure!

Maris et al PRC 90, 014314 (2014)

¹²C with chiral 2+3 body forces

The Hoyle state in ¹²C is a problem!

E

E

¹⁶O B(GT) experimentally measured via (*n*,*p*) at TRIUMF! SAN DIEGO STATE UNIVERSITY Hicks *et al* PRC **43**, 2554 (1991)

One can probe the mixing of np-nh in ¹⁶O through Gamow-Teller

¹⁶O B(GT) experimentally measured via (*n*,*p*) at TRIUMF! SAN DIEGO STATE UNIVERSITY Hicks *et al* PRC **43**, 2554 (1991)

One can probe the mixing of np-nh in ¹⁶O through Gamow-Teller

These cluster states are not easy to reproduce in the NCSM. They may require as much as 30ho excitations in a h.o. basis (T. Neff), yet they appear low in the spectrum

T. Neff, J. Phys. Conf. Ser. 403 012028 (2012)

Journal of Physics: Conference Series 403 (2012) 012028

doi:10.1088/1742-6596/403/1/012028

Figure 6. Decomposition of the ¹²C ground state and the Hoyle state into $N\hbar\Omega$ components for oscillator constants of 20 MeV (left) and 12 MeV (right).

Fermionic molecular dynamics calculation with Argonne V18 potential

T. Neff, J. Phys. Conf. Ser. 403 012028 (2012)

¹²C g.s. (fermionic molecular dynamics FMD calculation)

5

¹²C Hoyle state main FMD configurations.

T. Neff, J. Phys. Conf. Ser. 403 012028 (2012)

See also: S. Shen, D. Lee, et al, Nat. Commun. 14 (2023) 2777 (arXiv:2202.13596) for similar results on the lattice

5

¹²C Hoyle state main FMD configurations.

So basically we have intruders!

Yikes! Intruders are scary!

So basically we have intruders!

PAINT Workshop @ TRIUMF, Feb 27, 2024

BOU

BRUCE CAMPBELL

(THE EVIL DEAD, ARMY OF DARKNESS)

SAM RAIMI

(Director of SPIDER-MAN, DARKMAN, THE GIFT)

One can phenomenologically reproduce spectra for example, by adjusting single particle energies

One can phenomenologically reproduce spectra for example, by adjusting single particle energies

B. Dai, CWJ, et al, PRC 103, 064327 (2021)

(adjust s.pe.s to fit levels in ^{15,17}O relative to ¹⁶O)

One can phenomenologically reproduce spectra or by adjusting the strength of an SU(3) Casimir

Related to cluster states, islands of inversions and halo nuclei form a similar **challenge** to standard shell-model pictures

¹¹Li makes for an excellent case study:

- Example of "island of inversion"
- Halo or extended state; large deformation
- Small enough to be tackled numerically
- Testbed for techniques

One proton outside a filled shell + filled neutron shell One proton outside a filled shell + neutron 2p-2h

"island of inversion"

¹¹Li makes for an excellent case study

3/2-g.s. is a halo state and on an island of inversion

CASE STUDY: ¹¹LI

CASE STUDY: ¹¹LI

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ¹¹LI

CASE STUDY: ¹¹LI

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ¹¹LI n Diego State University 12 12 4 6 8 10 8 10 4 6 • 1/2₁ Entem-Machleidt N3LO 2.8 2.8 Radii are $3/2_{1}$ (iiii)^{2.0} 1^d 2.4 • 1/2⁻, notorious 2.6 (figure 1) difficult to **3**/2⁻2' 2.4 🖵 get right 2.2 2.2 2.8 2.8 (ju) 2.0 1 2.4 2.6 (III) Daejeon-16 12.4 L⁼ 2.2 2.2 10 10 12 6 12 4 8 6 8 4 Ν Ν max max

Mark Caprio

PAINT Workshop @ TRIUMF, Feb 27, 2024

 N_{max}

this also agrees well with experiment

PAINT Workshop @ TRIUMF, Feb 27, 2024

PAINT Workshop @ TRIUMF, Feb 27, 2024

We can use the shell model to dissect the wavefunctions

PAINT Workshop @ TRIUMF, Feb 27, 2024

PAINT Workshop @ TRIUMF, Feb 27, 2024

CASE STUDY: ¹¹LI

Grouptheoretical Decomposition

Symplectic Sp(3,R)

²⁹F is an analog of ¹¹Li

One proton outside a filled shell + filled neutron shell One proton outside a filled shell + neutron 2p-2h

"island of inversion"

²⁹F is an analog of ¹¹Li

CASE STUDY: ²⁹F

CASE STUDY: ²⁹F

CASE STUDY: ²⁹F

CASE STUDIES: ¹¹LI, ²⁹F

I suggest ¹¹Li, ²⁹F as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

CASE STUDIES: ¹¹LI, ²⁹F

I suggest ¹¹Li, ²⁹F as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

Note: these are technically closed-shells +1 nuclides.

For example, does **coupled-clusters** with a **spherical reference** eventually regain the deformation? Or does one need a **deformed reference** state?

Symplectic Sp(3,R) Symmetry

(From K. Launey, LSU)

From first principles: light/intermediate-mass nuclei, lowlying states

Group theory may be a natural framework for cluster physics

Kravvaris & Volya, PRL **119**, 062501 (2017)

FIG. 1. Spectrum of RGM Hamiltonian with the SRG softened N3LO interaction ($\lambda = 1.5 \text{ fm}^{-1}$) and $\hbar\Omega = 25 \text{ MeV}$ for a 2α system. Zero on the energy scale is set by the $\alpha + \alpha$ breakup threshold of the corresponding model. Levels are marked by spin and parity and by an absolute binding energy in units of MeV. The α binding energies for the $\alpha[0]$ and NCSM ($\alpha[4]$) calculations are -26.08 and -28.56 MeV, respectively. The inset shows the relative wave function of the two α clusters.

Summary

UNIVERSITY

The no-core configuration-interaction **shell model** remains useful.

But 'intruder' states are very challenging! They are highly deformed and require large model spaces

Summary

'deformation' or 'cluster' or 'particle-hole' or....

...but at times the correlation energy in these states bring them low in the spectrum (or even to the ground state)

Summary

UNIVERSITY

The no-core configuration-interaction **shell model** remains useful.

But 'intruder' states are very challenging! They are highly deformed and require large model spaces

