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Intruder structure (and shape coexistence)
“[T]he intruder configuration . . . corresponds to a more correlated state compared
to the 0~ω states. Thus, low-lying 2p-2h intruder configurations are favored only
at and near to the . . . shell closure.” Normal (0~ω) vs. intruder (2~ω)
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K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).



M. A. Caprio, University of Notre Dame

In ab initio no-core configuration interaction (NCCI) calculations...
How do “normal” and “intruder” states converge? 9Be, 10Be

What do we find for intruder structure at N = 8? 11Li, 14C

Can we describe mixing of normal & intruder configurations?
Postscript: Can we see the 4~ω intruder in 16O?
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Many-body problem in an oscillator basis
No-core configuration interaction (NCCI) approach

a.k.a. no-core shell model (NCSM)

“0��”

“2��”

Antisymmetrized product basis Slater determinants
Distribute nucleons over oscillator shells
Organize basis by # oscillator excitations Nex

relative to lowest Pauli-allowed filling
Nex = 0,2, . . . (i.e., “0~ω”, “2~ω”, . . .)

Basis must be truncated: Nex ≤ Nmax

Convergence towards exact result with increasing Nmax. . .

B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).
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Convergence of NCCI calculations
Results in finite space depend upon:

– Many-body truncation Nmax
– Oscillator length b (or ~ω)

b =
(~c)

[(mNc2)(~ω)]1/2

Convergence of results signaled
by independence of Nmax & ~ω
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Convergence of NCCI calculations
Results in finite space depend upon:

– Many-body truncation Nmax
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Convergence for “normal” states 9Be
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Convergence for “intruder” band 10BeRESONANT α SCATTERING OF 6He: LIMITS . . . PHYSICAL REVIEW C 87, 054301 (2013)

resonance strength exists in the energy region covered in the
present study. There is a minor peak structure at 2.5 MeV. It
is difficult to judge whether this is due to a resonance or to a
statistical fluctuation, particularly without the corresponding
information from an angular distribution. In the former case,
it would be possible that it originates from the 10.15-MeV 4+
state with nearly the same resonance energy. A fit with a Voigt
function [50] was made to estimate the possible partial width

8Be. Three different backgrounds, namely linear, quadratic,
and exponential functions, were tested. The resonance energy
was set to the result from the elastic channel (2.56 MeV) and
varied within the error (0.15 MeV), while the experimental
resolution was fixed to 0.25 MeV rms, which arises from
the uncertainty in reaction energy (0.1 MeV) and that in
vertex determination (0.2 MeV). The resulting 
8Be/
 value
is 0.09(5) and this gives an upper limit of 
8Be/
 ∼ 0.15 for
this possible decay branch.

V. DISCUSSION

The present study identified a 4+ state with a large α
decay width 
α/
 = 0.49(5) at 9.98(15) MeV in 10Be. The
observed state most likely corresponds to the known 4+ level
at 10.15(2) MeV [31,32] given the observed excitation energy
and spin-parity. In previous studies [24,32,33], this state is
considered the 4+ member of a rotational band built on the
second 0+ state at 6.1793(7) MeV [51]. The excitation energies
of 10Be states are plotted against J (J + 1) in Fig. 11. The
linear extrapolation from the 0+

2 state and the 2+ state at
7.542(1) MeV [51] indeed nicely agrees with the 10.15-MeV
state in energy. The large moment of inertia from the narrow
level spacing of the band members is well explained by the
σ -type molecular orbital structure from both cluster-model
calculations [16,21,22] and microscopic calculations based
on the antisymmetric molecular dynamics (AMD) method
[15,24]. In this picture, the valence neutrons are delocalized
over the two clusterized α cores and the extension along the
α cores’ axis gives strong deformative characteristics to 10Be.
The large decay width for α emission indicates a high degree of
clusterization in this 4+ state and supports this type of cluster
structure. An α spectroscopic factor of 3.1(2) is estimated in a
recent analysis of the measured partial width [61]. This value
is as large as the spectroscopic factors of about 1.5 for the
ground-state band members of 8Be with well-developed two
α clusters [61,62].

In addition to the 0+
2 state, theoretical studies [15,16,22,24]

predict a π -type cluster structure for the 0+ ground state, in
which valence neutrons are extending perpendicular to the
axis of the two α cores. Given the 2+ state at 3.37 MeV, the
4+ state of the 0+

g.s. band is anticipated at around 11 MeV as
seen in the linear extrapolation shown in Fig. 11. In previous
studies [24,33], the 4+ state at 11.76(2) MeV is considered
the most likely candidate for the 4+ member of the 0+

g.s. band
because of its excitation energy and spin-parity. In the present
study, however, there was no resonance observed around Ex =
11.8 MeV (Ec.m. = 4.4 MeV). This is in stark contrast with
the significant resonance strength of the 4+ state of the 0+

2
band at 10.2 MeV. The α decay width of the 11.8-MeV
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FIG. 11. (Color online) Plot of Ex vs J (J + 1) for 10Be. The
band members of the ground and the second 0+ states are shown by
the circles and squares, respectively. The linear extrapolation using
the 0+ and 2+ states is shown for each band. The horizontal lines
at J = 4 denote predicted level energies of the 4+ member of the
ground state band from the β-γ constraint AMD method [24] (solid
line), the variational AMD method [15] (dashed line), the four-body
cluster model [21] (dotted line), the molecular orbital model [16]
(dot-dashed line), the semimicroscopic algebraic cluster model [18],
(double-dot-dashed line), and the multicluster generator coordinate
method [19] (triple-dot-dashed line). The data of Refs. [16,21] were
obtained from the calculated values with respect to the threshold
energy of 2α + 2n at 8.386 MeV. The shaded area denotes the
energy domain covered by the present study.

state is estimated less than 20 keV and is much smaller than

α = 145(15) keV deduced for the 10.2-MeV state. Such
a difference is unexpected as both 4+ states belong to the
rotational bands of the clusterized 0+ states. Nearly the same
spectroscopic amplitudes of 6He + α are predicted for these
4+ states in the microscopic 2α + 2n four-cluster model [21].
The present result does not agree with this prediction. The
small spectroscopic amplitude of the 4+ member is also unlike
the ground state 0+ band of 8Be, despite what appears to
be a similar moment of inertia. The α spectroscopic factors
are predicted to be equally large in all 0+, 2+, and 4+ states
in 8Be [62], which is supported by the folding potential model
that well describes the level energies and widths of these
states [63].

There are two possible scenarios to account for the hindered
strength of the 4+ member of the 0+

g.s. band. First is the
possibility that the 4+ state at 11.8 MeV does not belong
to the 0+

g.s. band, and the real band member exists outside the
energy window of the present study (Ec.m. = 2–6 MeV or
Ex = 9.4–13.4 MeV). This scenario implies an unusual level
spacing for the ground state band. On the contrary, regardless
of the framework, most theoretical studies [15,16,18,19,21,24]
predict the 4+ state of the 0+

g.s. band in the energy range
Ex = 10–13 MeV (Fig. 11), the region anticipated from the
proportionality to J (J + 1). The second scenario is that the

054301-11

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013).
Orbital schematics from Y. Kanada-En’yo, H. Horiuchi,
and A. Doté, Phys. Rev. C 60, 064304 (1999).
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Structure of “intruder” band 10Be
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See also: M. A. Caprio, P. J. Fasano, A. E. McCoy, P. Maris, and J. P. Vary, Bulg. J. Phys. 46, 455 (2019) (SDANCA19).
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Structure of the 11Li ground state?
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Fig. 7. The size and granularity for the most studied halo nucleus 11Li. The matter distribution extends far out from the
nucleus such that the rms matter radius of 11Li is as large as 48Ca, and the radius of the halo neutrons as large as for
the outermost neutrons in 208Pb.

mainly in s- and p-states and can therefore tunnel far out from the core. It turns out that the rms
matter radius of 11Li is similar to the radius of 48Ca while the two halo neutrons extend to a volume
similar in size to 208Pb.

As mentioned, the /rst series of measurements of interaction cross-sections using radioactive
beams was performed by Tanihata and coworkers in 1985 [41,42]. The &I were measured with
transmission-type experiments. Their classical results for He and Li isotopes were one of the main
experimental hints of the existence of halo states in nuclei. The measured interaction cross sections
were used to extract rms radii using Glauber-model analysis. This type of experiment has been
continued at the Fragment Separator (FRS) at GSI and there exists an extensive quantity of measured
interaction and reaction cross-sections for isotopes ranging from 3He to 32Mg [95]. The measured
cross sections have been used to deduce rms matter radii by a Glauber-model analysis in the optical
limit [72]. Fig. 8 shows the systematics of deduced radii. The theoretical method, which assumes
static density distributions, has some problems for the loosely bound halo systems. For such nuclei
the granular structure of the nucleus, with a compact core and widely dispersed halo neutrons,
has to be taken into account [97,98]. In such a treatment the calculated cross sections are reduced
considerably, giving increased values for the rms radii. For 11Li, for example, the value of 3:12 fm
(Fig. 8) is adjusted up to 3:55 fm. Some examples of cross-sections and deduced rms radii are given
in Table 1.

Proton elastic scattering data for dripline nuclei has been obtained in experiments using the
so-called inverse kinematics method where a radioactive beam of about 700 MeV=u is directed to-
wards a proton target. Data from such experiments have been obtained at GSI with the hydrogen-/lled
IKAR multiple ionization chamber, which served both as target and as recoil-proton detector [99].
From the diIerential scattering cross-sections at small momentum transfer both the overall size and
the shape of the radial nuclear matter distribution were obtained [73,99–102] for isotopes of He and
Li. Fig. 9 shows the data for Li isotopes. For 11Li the extracted radius is 3:62(19) fm which is close
to the value obtained in the reanalysis of the interaction cross-section data [97]. The results for He
and Li are given in Table 1.

Integral measurements like the total reaction cross-sections and the elastic scattering cross-sections,
measured only in a small momentum transfer region, are only sensitive to the overall size of the
system. In order to explore the single particle and collective structures continuum excitations play an
important rôle. The three-body breakup 6He → 4He+ n+n with a 240 MeV=u secondary 6He beam

B. Jonson

TUNL (2012)

Shell model: Doubly-magic plus one proton
Closed shell neutron

Interaction σ & p scattering: Enhanced matter radius
Neutron halo

Neutron knockout: Neutron (0p3/2)2 and (1s1/2)2

contribute about equally to ground state
Intruder configurations

Excitation spectrum: Not particularly illuminating!
No JP assignments. Unbound, but relatively narrow.

B. Jonson, Phys. Rep. 389, 1 (2004).
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Low-lying intruder structure in 11Li
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Elliott SU(3) symmetry for 11Li
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Transition as measure of intruder mixing
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Mixing depends on energy difference E2−E1 and mixing matrix element V .

If transition operatorM does not connect “pure” (unmixed) states,
transition matrix element for “mixed” states measures: (1) their mixing
and (2) the difference in diagonal matrix elements, i.e., moments M2−M1:

〈ψ1|M|ψ2〉 = cosθ sinθ
[
〈ψ(0)

2 |M|ψ
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Mixing analysis of ab initio calculations for 11Li
Assume 〈0~ω|M(E0)|2~ω〉 vanishes for “pure” (unmixed) 3/2− states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.
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Mixing analysis of ab initio calculations for 11Li
Assume 〈0~ω|M(E0)|2~ω〉 vanishes for “pure” (unmixed) 3/2− states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.
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Mixing analysis of ab initio calculations for 11Li
Assume 〈0~ω|M(E2)|2~ω〉 vanishes for “pure” (unmixed) 3/2− states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.
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The E2 strength to the first 2+ state(s) in 14C?
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H. Crannell et al., Proc. Int. Conf. Nucl. Struct. Studies Using Electron
Scattering and Photoreaction, Sendai, Japan (1972).
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The E2 strength to the first 2+ state(s) in 14C?
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Convergence of intruder state energies in 14C
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Low-lying intruder structure in 14C
Coexisting 0+-2+ sequences: 0~ω and 2~ω
Very different “moments of inertia”⇒ 2+ states approach and mix
Excited structure as triaxial rotor? Elliott SU(3)

0 2 4 6 8 100.0

0.2

0.4

0.6

P(Nex) 2+1
Normal

0 2 4 6 8 10

14C
Daejeon16
Nmax=10

=15.0MeV

2+2
Intruder

0
+

0
+2
+

2
+

0 1 2 3 4
J

0

5

10

15

E
x
(M

eV
)

14C+
Daejeon16
Nmax=10

=15.0MeV



M. A. Caprio, University of Notre Dame

Elliott SU(3) symmetry for 14C
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Mixing analysis of ab initio calculations for 14C
Assume 〈0~ω|M(E2)|2~ω〉 vanishes for “pure” (unmixed) 2+ states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.
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Mixing analysis of ab initio calculations for 14C
Assume 〈0~ω|M(E2)|2~ω〉 vanishes for “pure” (unmixed) 2+ states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.
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Mixing analysis of ab initio calculations for 14C
Assume 〈0~ω|M(E0)|2~ω〉 vanishes for “pure” (unmixed) 2+ states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.
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The E2 strength to the first 2+ state(s) in 14C?

Two-state mixing estimate
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Convergence of normal, intruder, and “super-intruder” states?
E

N max

N ≈ 8
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Low-lying (super-)intruder structure in 16O?
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Summary
Different states in low-lying spectrum have different. . .

– Rotational moments of inertia Energy spacing within band
– Shell model character Normal (0~ω) vs. intruder (2~ω)
– Proton/neutron asymmetric deformation Qn/Qp
– Elliott SU(3) symmetry (≈“shape”)

Intruders hard to converge, but tractable with soft interaction Daejeon16
Mixing in ab initio results. . . Emergent two-state mixing?

– Strong mixing as same-J states approach Within a few MeV
– Mixing can be transient as energies cross 10Be 4+

1 & 4+
2

– Mixing can be physical 11Li ground state / 14C 2+
1 & 2+

2
– Transition matrix element provides handle on mixing angle θ
– Calculated “energy denominator” may be unconverged or inexact
– But. . . Can robustly extract emergent mixing matrix element V

⇒ Estimate expected mixing at “physical” energy difference
Beware! Ignore imminent mixing with an intruder at your own risk!
For N = Z. . . Elusive 4~ω intruder states within reach? 16O 0+

2


