Intruder structure, shape coexistence, and configuration mixing from an ab initio perspective

Mark A. Caprio
Department of Physics and Astronomy
University of Notre Dame

Progress in Ab Initio Nuclear Theory
Vancouver, BC
February 27, 2024

Intruder structure (and shape coexistence)

"[T]he intruder configuration . . . corresponds to a more correlated state compared to the $0 \hbar \omega$ states. Thus, low-lying $2 \mathrm{p}-2 \mathrm{~h}$ intruder configurations are favored only at and near to the . . shell closure." Normal $(0 \hbar \omega)$ vs. intruder $(2 \hbar \omega)$

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

In ab initio no-core configuration interaction (NCCI) calculations... How do "normal" and "intruder" states converge? ${ }^{9} \mathrm{Be},{ }^{10} \mathrm{Be}$
What do we find for intruder structure at $N=8 ? \quad{ }^{11} \mathrm{Li},{ }^{14} \mathrm{C}$
Can we describe mixing of normal \& intruder configurations?
Postscript: Can we see the $4 \hbar \omega$ intruder in ${ }^{16} \mathrm{O}$?

C 6	${ }^{9} \mathrm{C}$	${ }^{10} \mathrm{C}^{0+}$	${ }^{11} \mathrm{C}^{3 / 2-}$	${ }^{12} \mathrm{C}^{0+}$	${ }^{13} \mathrm{C}^{1 / 2-}$	$\left.{ }^{14} \mathrm{C}\right)^{0+}$
B 5	${ }^{8} \mathrm{~B}{ }^{2+}$	$\left[{ }^{9} \mathrm{~B}{ }^{3 / 2-}\right.$	${ }^{10} \mathrm{~B}^{3+}$	${ }^{11} \mathrm{~B}$	${ }^{12} \mathrm{~B}^{1+}$	${ }^{13}{ }^{3 / 2-}$
Be 4	${ }^{7} \mathrm{Be}^{3 / 2-}$	[${ }^{8} \mathrm{Be}$]	${ }^{9} \mathrm{Be}$	${ }^{10} \mathrm{Be}^{\text {a+ }}$	${ }^{11} \mathrm{Be}^{1 / 2+}$	${ }^{12} \mathrm{Be}{ }^{0+}$
Li 3	${ }^{6} \mathrm{Li}^{1+}$	${ }^{7} \mathrm{Li}$	${ }^{8} \mathrm{Li}{ }^{2+}$	${ }^{9} \mathrm{Li}$		$\left.{ }^{11} \mathrm{Li}\right)^{3 /-}$
	3	4	5	6		

Many-body problem in an oscillator basis

No-core configuration interaction (NCCI) approach a.k.a. no-core shell model (NCSM)

Antisymmetrized product basis Slater determinants

Distribute nucleons over oscillator shells Organize basis by \# oscillator excitations N_{ex} relative to lowest Pauli-allowed filling

$$
N_{\mathrm{ex}}=0,2, \ldots \quad \text { (i.e., " } 0 \hbar \omega ", " 2 \hbar \omega ", \ldots \text {) }
$$

Basis must be truncated: $N_{\text {ex }} \leq N_{\text {max }}$
Convergence towards exact result with increasing $N_{\max }$...

Convergence of NCCI calculations

Results in finite space depend upon:

- Many-body truncation $N_{\text {max }}$
- Oscillator length b (or $\hbar \omega$)

$$
b=\frac{(\hbar c)}{\left[\left(m_{N} c^{2}\right)(\hbar \omega)\right]^{1 / 2}}
$$

Convergence of results signaled

by independence of $N_{\max } \& \hbar \omega$

Convergence of NCCI calculations

Results in finite space depend upon:

- Many-body truncation $N_{\text {max }}$
- Oscillator length b (or $\hbar \omega$)

$$
b=\frac{(\hbar c)}{\left[\left(m_{N} c^{2}\right)(\hbar \omega)\right]^{1 / 2}}
$$

Convergence of results signaled by independence of $N_{\max } \& \hbar \omega$

Convergence for "normal" states ${ }^{9} \mathrm{Be}$

See also: M. A. Caprio, P. J. Fasano, P. Maris, A. E. McCoy, and J. P. Vary, Eur. Phys. J. A 56, 120 (2.A.Cario, U

Convergence for "intruder" band ${ }^{10} \mathrm{Be}$

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013). Orbital schematics from Y. Kanada-En'yo, H. Horiuchi, and A. Doté, Phys. Rev. C 60, 064304 (1999).

Extrapolation: Exponential in $N_{\max }$ (3-point); see P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Mev. C. C 7aprio. University of Notre Dame 014308 (2009).

See also: M. A. Caprio, P. J. Fasano, A. E. McCoy, P. Maris, and J. P. Vary, Bulg. J. Phys. 46, $455^{\text {M.A. Caprio, University of Notre Dant }}$ (SDA) (SDANCA19).

Structure of the ${ }^{11} \mathrm{Li}$ ground state?

Shell model: Doubly-magic plus one proton Closed shell neutron
Interaction $\sigma \mathcal{E} p$ scattering: Enhanced matter radius Neutron halo
Neutron knockout: Neutron $\left(0 p_{3 / 2}\right)^{2}$ and $\left(1 s_{1 / 2}\right)^{2}$ contribute about equally to ground state

Intruder configurations
Excitation spectrum: Not particularly illuminating! No J^{P} assignments. Unbound, but relatively narrow.

| 11.300 |
| :--- | :--- |
| |
| 6.230 |
| 4.860 |
| 3.700 |
| 2.420 |
| 1.220 |
| $[34.2728] \quad \mathrm{J}^{\pi}=3 / 2^{-}: \mathrm{T}=5 / 2$ |
| 11 Li |

TUNL (2012)

Low-lying intruder structure in ${ }^{11} \mathrm{Li}$

Elliott $\mathrm{SU}(3)$ symmetry for ${ }^{11} \mathrm{Li}$

Transition as measure of intruder mixing

Pure states

Mixed states
$H=\left(\begin{array}{cc}E_{1}(\lambda) & V \\ V & E_{2}(\lambda)\end{array}\right) \quad\binom{\left|\psi_{1}\right\rangle}{\left|\psi_{2}\right\rangle}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{\left|\psi_{1}^{(0)}\right\rangle}{\left|\psi_{2}^{(0)}\right\rangle}$
Mixing depends on energy difference $E_{2}-E_{1}$ and mixing matrix element V. If transition operator \mathcal{M} does not connect "pure" (unmixed) states, transition matrix element for "mixed" states measures: (1) their mixing and (2) the difference in diagonal matrix elements, i.e., moments $M_{2}-M_{1}$:

$$
\left\langle\psi_{1}\right| \mathcal{M}\left|\psi_{2}\right\rangle=\cos \theta \sin \theta\left[\left\langle\psi_{2}^{(0)}\right| \mathcal{M}\left|\psi_{2}^{(0)}\right\rangle-\left\langle\psi_{1}^{(0)}\right| \mathcal{M}\left|\psi_{1}^{(0)}\right\rangle\right]
$$

Mixing analysis of $a b$ initio calculations for ${ }^{11} \mathrm{Li}$

Assume $\langle 0 \hbar \omega| \mathcal{M}(E 0)|2 \hbar \omega\rangle$ vanishes for "pure" (unmixed) $3 / 2^{-}$states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.

Mixing analysis of $a b$ initio calculations for ${ }^{11} \mathrm{Li}$

Assume $\langle 0 \hbar \omega| \mathcal{M}(E 0)|2 \hbar \omega\rangle$ vanishes for "pure" (unmixed) $3 / 2^{-}$states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.

Mixing analysis of $a b$ initio calculations for ${ }^{11} \mathrm{Li}$

Assume $\langle 0 \hbar \omega| \mathcal{M}(E 2)|2 \hbar \omega\rangle$ vanishes for "pure" (unmixed) $3 / 2^{-}$states.
Deduce mixing from matrix elements for NCCI calculated (mixed) states.

The $E 2$ strength to the first 2^{+}state(s) in ${ }^{14} \mathrm{C}$?

Electron Scattering from Low Lying 2^{+}States in ${ }^{14} \mathrm{C}^{*}$
Hall Cranne11, P.L. Hallowell, J.T. O'Brien,
J.M. Finn and F.J. Kline ${ }^{+}$

The Catholic University of America, Washington, D.C.

and
S. Penner, J.W. Lightbody, Jr., and S.P. Pivozinsky National Bureau of Standards, washington, D.C.

H. Crannell et al., Proc. Int. Conf. Nucl. Struct. Studies Using Electron Scattering and Photoreaction, Sendai, Japan (1972).

The $E 2$ strength to the first 2^{+}state(s) in ${ }^{14} \mathrm{C}$?

Convergence of intruder state energies in ${ }^{14} \mathrm{C}$

Low-lying intruder structure in ${ }^{14} \mathrm{C}$

Coexisting $0^{+}-2^{+}$sequences: $0 \hbar \omega$ and $2 \hbar \omega$ Very different "moments of inertia" $\Rightarrow 2^{+}$states approach and mix Excited structure as triaxial rotor? Elliott $\mathrm{SU}(3)$

Elliott $\mathrm{SU}(3)$ symmetry for ${ }^{14} \mathrm{C}$

Mixing analysis of ab initio calculations for ${ }^{14} \mathrm{C}$

 Assume $\langle 0 \hbar \omega| \mathcal{M}(E 2)|2 \hbar \omega\rangle$ vanishes for "pure" (unmixed) 2^{+}states.Deduce mixing from matrix elements for NCCI calculated (mixed) states.

Mixing analysis of $a b$ initio calculations for ${ }^{14} \mathrm{C}$

 Assume $\langle 0 \hbar \omega| \mathcal{M}(E 2)|2 \hbar \omega\rangle$ vanishes for "pure" (unmixed) 2^{+}states.Deduce mixing from matrix elements for NCCI calculated (mixed) states.

Mixing analysis of $a b$ initio calculations for ${ }^{14} \mathrm{C}$

 Assume $\langle 0 \hbar \omega| \mathcal{M}(E 0)|2 \hbar \omega\rangle$ vanishes for "pure" (unmixed) 2^{+}states.Deduce mixing from matrix elements for NCCI calculated (mixed) states.

The $E 2$ strength to the first 2^{+}state(s) in ${ }^{14} \mathrm{C}$?

Two-state mixing estimate

$$
\begin{aligned}
& V \approx 0.6 \mathrm{MeV} \text { Ab initio } \\
& \Delta \equiv \frac{1}{2}\left[E\left(2_{2}^{+}\right)-E\left(2_{1}^{+}\right)\right] \\
& =\frac{1}{2}[(8.32 \mathrm{MeV})-(7.01 \mathrm{MeV})] \\
& =0.65 \mathrm{MeV} \text { Experiment } \\
& \sin 2 \theta=-\frac{V}{\Delta} \Rightarrow|\theta| \approx 34^{\circ} \quad \text { Delicate! } \\
& \frac{B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)}{B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)}=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \approx 0.44
\end{aligned}
$$

Convergence of normal, intruder, and "super-intruder" states?

Low-lying (super-)intruder structure in ${ }^{16} \mathrm{O}$?

Summary

Different states in low-lying spectrum have different. . .

- Rotational moments of inertia Energy spacing within band
- Shell model character Normal (0ћ ω) vs. intruder ($2 \hbar \omega$)
- Proton/neutron asymmetric deformation Q_{n} / Q_{p}
- Elliott $\mathrm{SU}(3)$ symmetry (\approx "shape")

Intruders hard to converge, but tractable with soft interaction Daejeon16
Mixing in ab initio results... Emergent two-state mixing?

- Strong mixing as same-J states approach Within a few MeV
- Mixing can be transient as energies cross ${ }^{10} \mathrm{Be} 4_{1}^{+} \mathcal{E} 4_{2}^{+}$
- Mixing can be physical ${ }^{11} \mathrm{Li}$ ground state $/{ }^{14} \mathrm{C} 2_{1}^{+} \mathcal{E} 2_{2}^{+}$
- Transition matrix element provides handle on mixing angle θ
- Calculated "energy denominator" may be unconverged or inexact
- But... Can robustly extract emergent mixing matrix element V
\Rightarrow Estimate expected mixing at "physical" energy difference
Beware! Ignore imminent mixing with an intruder at your own risk!
For $N=Z \ldots$ Elusive $4 \hbar \omega$ intruder states within reach? ${ }^{16} \mathrm{O} 0_{2}^{+}$

