Coupling nuclear structure and relativistic hydrodynamic calculations: collectivity in small systems

Benjamin Bally

PAINT 2024 - TRIUMF - 01/03/2024

- · Interface between low- and high-energy nuclear physics
 - Nuclear structure recognized as important to understand heavy-ion collisions Giacalone et al., PRL 127, 242301 (2021)
 Zhang et al., PRL 128, 022301 (2022)
 Jia et al., PRL 131, 022301 (2023)

- · Interface between low- and high-energy nuclear physics
 - Nuclear structure recognized as important to understand heavy-ion collisions Giacalone et al., PRL 127, 242301 (2021)
 Zhang et al., PRL 128, 022301 (2022)
 Jia et al., PRL 131, 022301 (2023)
 - Until now, mostly EDF responded to the call (¹²⁹Xe,¹⁹⁷Au,²⁰⁸Pb,²³⁸U)
 Bally *et al.*, PRL 128, 082301 (2022)
 Ryssens *et al.*, PRL 130, 212302 (2023)

- · Interface between low- and high-energy nuclear physics
 - Nuclear structure recognized as important to understand heavy-ion collisions Giacalone et al., PRL 127, 242301 (2021)
 Zhang et al., PRL 128, 022301 (2022)
 Jia et al., PRL 131, 022301 (2023)
 - Until now, mostly EDF responded to the call (¹²⁹Xe,¹⁹⁷Au,²⁰⁸Pb,²³⁸U) Bally *et al.*, PRL 128, 082301 (2022) Ryssens *et al.*, PRL 130, 212302 (2023)
 - One *ab initio* exception (¹⁶O)
 Summerfield *et al.*, PRC 104, L041901 (2021)

- · Interface between low- and high-energy nuclear physics
 - Nuclear structure recognized as important to understand heavy-ion collisions Giacalone et al., PRL 127, 242301 (2021)
 Zhang et al., PRL 128, 022301 (2022)
 Jia et al., PRL 131, 022301 (2023)
 - Until now, mostly EDF responded to the call (¹²⁹Xe,¹⁹⁷Au,²⁰⁸Pb,²³⁸U) Bally *et al.*, PRL 128, 082301 (2022) Ryssens *et al.*, PRL 130, 212302 (2023)
 - One *ab initio* exception (¹⁶O)
 Summerfield *et al.*, PRC 104, L041901 (2021)
- ${}^{16}O + {}^{16}O$ already performed at RHIC (2021) and is scheduled at LHC (2025)

- · Interface between low- and high-energy nuclear physics
 - Nuclear structure recognized as important to understand heavy-ion collisions Giacalone et al., PRL 127, 242301 (2021)
 Zhang et al., PRL 128, 022301 (2022)
 Jia et al., PRL 131, 022301 (2023)
 - Until now, mostly EDF responded to the call (¹²⁹Xe, ¹⁹⁷Au, ²⁰⁸Pb, ²³⁸U) Bally *et al.*, PRL 128, 082301 (2022) Ryssens *et al.*, PRL 130, 212302 (2023)
 - One *ab initio* exception (¹⁶O)
 Summerfield *et al.*, PRC 104, L041901 (2021)
- ${}^{16}O + {}^{16}O$ already performed at RHIC (2021) and is scheduled at LHC (2025)
- New proposal for a future LHC run (not before 2029)

CERN-TH-2024-021 The unexpected uses of a bowling pin: exploiting ²⁰Ne isotopes for precision characterizations of collectivity in small systems <u>Giuliano Giacalone</u>,^{1,*} <u>Benjamin Bally</u>,² <u>Govert Nijs</u>,³ <u>Shihang Shen</u>,⁴ <u>Thomas Duget</u>,^{5,6} <u>Jean-Paul Ebran</u>,^{7,8} <u>Serdar Elhatisari</u>,^{9,10} <u>Mikael Frosin</u>,¹¹ <u>Timo A. Lähde</u>,^{12,13} <u>Dean Lee</u>,¹⁴ <u>Bing-Nan Lu</u>,¹⁵ <u>Yuan-Zhuo Ma</u>,¹⁴ <u>UlFG. Meißner</u>,^{10,16,17} <u>Jacquelyn Noronha-Hostler</u>,¹⁸ <u>Christopher Plumberg</u>,¹⁹ <u>Tomás R. Rodríguez</u>,²⁰ <u>Robert Roth</u>,^{21,22} <u>Wilke van der Schee</u>,^{3,23,24} and <u>Vittorio Somà⁵</u>

- Large collaboration of theorists
- From low- and high-energy nuclear physics communities
 - ◊ Heavy-ion collisions
 - Nuclear structure (PGCM)
 - ◊ Nuclear structure (NLEFT)

Ollitrault, EPJA 59, 236 (2023)

Phenomenology of heavy-ion collisions I

ALICE collaboration

2 fm

PAINT 2024 - TRIUMF - 01/03/2024

Phenomenology of heavy-ion collisions II

credit: CMS collaboration

Phenomenology of heavy-ion collisions II

credit: CMS collaboration

• Probability distribution of particle emission

$$P(\phi,\eta) = P(\phi) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} V_n e^{-in\phi}$$

 $V_2 \equiv$ elliptic flow, $V_3 \equiv$ triangular flow, . . .

Phenomenology of heavy-ion collisions II

credit: CMS collaboration

• Probability distribution of particle emission

$$P(\phi,\eta) = P(\phi) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} V_n e^{-in\phi}$$

 $V_2 \equiv$ elliptic flow, $V_3 \equiv$ triangular flow, . . .

Average of pair distribution

$$\left(\frac{dN_{\text{pair}}}{d\Delta\eta d\Delta\phi}\right) = \left\langle P(\phi)P(\phi + \Delta\phi)\right\rangle == \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{+\infty} \left\langle |V_n|^2 \right\rangle \cos(n\Delta\phi)\right)$$

Ollitrault, PRD 46, 229 (1992) Ollitrault, EPJA 59, 236 (2023)

Ollitrault, PRD 46, 229 (1992) Ollitrault, EPJA 59, 236 (2023)

Courtesy of G. Giacalone

• Nucleons sampled using a model (often simply a Woods-Saxon density)

Courtesy of G. Giacalone

- Nucleons sampled using a model (often simply a Woods-Saxon density)
- Participant nucleons translated into energy density using a prescription, e.g., $\mathsf{T}_\mathsf{R}\mathsf{ENTo}$ model
- Run relativistic hydrodynamic simulations

- $\langle p_t \rangle$ is the average transverse momentum of particles
- Looking at low $\langle p_t \rangle \Rightarrow$ looking at larger nuclear overlaps

• Pearson correlation coefficient

$$\rho(v_2^2, \langle p_t \rangle) = \frac{\langle \delta v_2^2 \delta \langle p_t \rangle \rangle}{\sqrt{\langle (\delta v_2^2)^2 \rangle \langle (\delta \langle p_t \rangle)^2 \rangle}} \quad \text{where } \delta o = o - \langle o \rangle$$

Phenomenology of heavy-ion collisions VI

Bally et al., PRL 128, 082301 (2022)

• Pearson correlation coefficient

$$\rho(v_2^2, \langle p_t \rangle) = \frac{\langle \delta v_2^2 \delta \langle p_t \rangle \rangle}{\sqrt{\langle (\delta v_2^2)^2 \rangle \langle (\delta \langle p_t \rangle)^2 \rangle}} \quad \text{where } \delta o = o - \langle o \rangle$$

Cez

Phenomenology of heavy-ion collisions VI

Pearson correlation coefficient

$$\rho(v_2^2, \langle p_t \rangle) = \frac{\langle \delta v_2^2 \delta \langle p_t \rangle \rangle}{\sqrt{\langle (\delta v_2^2)^2 \rangle \langle (\delta \langle p_t \rangle)^2 \rangle}} \quad \text{where } \delta o = o - \langle o \rangle$$

Chinellato, Quark Matter 2023

- Collectivity appears in *small systems* (p+p, p+A, d+A, ...)
- Is it the same mechanism? Is hydrodynamic the correct description?
- How small can a QGP be?

- Experimental methods exist but have also limitations
 - $\diamond \quad p + {}^{197} Au \ \textit{versus} \ d + {}^{197} Au$
 - \diamond Central ¹⁶O + ¹⁶O *versus* peripheral ²⁰⁸Pb + ²⁰⁸Pb

- Experimental methods exist but have also limitations
 - $\diamond \quad p + {}^{197} Au \ \textit{versus} \ d + {}^{197} Au$
 - \diamond Central ¹⁶O + ¹⁶O *versus* peripheral ²⁰⁸Pb + ²⁰⁸Pb
- New idea: central 16 O + 16 O versus central 20 Ne + 20 Ne
 - ◊ Systems with similar A
 - Same centrality class
 - Overlap region well-defined

- Experimental methods exist but have also limitations
 - $\diamond \quad p + {}^{197} Au \ \textit{versus} \ d + {}^{197} Au$
 - \diamond Central ¹⁶O + ¹⁶O *versus* peripheral ²⁰⁸Pb + ²⁰⁸Pb
- New idea: central 16 O + 16 O versus central 20 Ne + 20 Ne
 - ◊ Systems with similar A
 - ◊ Same centrality class
 - Overlap region well-defined
 - ²⁰Ne exhibits large ground-state deformation!

- Experimental methods exist but have also limitations
 - $\diamond \quad p + {}^{197} Au \ \textit{versus} \ d + {}^{197} Au$
 - \diamond Central ¹⁶O + ¹⁶O *versus* peripheral ²⁰⁸Pb + ²⁰⁸Pb
- New idea: central 16 O + 16 O versus central 20 Ne + 20 Ne
 - ◊ Systems with similar A
 - Same centrality class
 - Overlap region well-defined
 - $\diamond~^{20} \rm Ne$ exhibits large ground-state deformation!
 - Ab initio structure calculations possible

- Experimental methods exist but have also limitations
 - $\diamond \quad p + {}^{197} Au \ \textit{versus} \ d + {}^{197} Au$
 - \diamond Central ¹⁶O + ¹⁶O *versus* peripheral ²⁰⁸Pb + ²⁰⁸Pb
- New idea: central 16 O + 16 O versus central 20 Ne + 20 Ne
 - ◊ Systems with similar A
 - ◊ Same centrality class
 - Overlap region well-defined
 - ◊ ²⁰Ne exhibits large ground-state deformation!
 - Ab initio structure calculations possible
 - \Rightarrow Test hydrodynamic description in a small systems

• ion+ion collisions scheduled 1 month/year until the end of operation

Tools and workflow

- TAURUS: https://github.com/project-taurus
- Trajectum: https://sites.google.com/view/govertnijs/trajectum
- SMASH: https://github.com/smash-transport/smash

NLEFT calculations

- Nuclear Lattice Effective field Theory (NLEFT) Lee, Front. in Phys. 8, 174 (2020)
 Lähde and Meißner, Lectures Notes in Phys., Springer (2019)
- Mesh with 8 sites and spacing a = 1.315 fm
- Minimal pionless EFT Hamiltonian with SU(4) symmetry
- Pin-hole algorithm → nucleon positions Elhatisari *et al.*, PRL 119, 222505 (2017)

 \Rightarrow see Dean's presentation

PAINT 2024 - TRIUMF - 01/03/2024

• Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\sigma M}\rangle = \sum_{q K} f_{\epsilon}^{\sigma M}(q, K) P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where } \sigma \equiv Z, N, J, \pi$$

cea

• Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon}^{\sigma M}(q, K) P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where } \sigma \equiv Z, N, J, \pi$$

• Full method: PGCM + Perturbation Theory

Frosini *et al.*, EPJA 58, 62 (2022) Frosini *et al.*, EPJA 58, 63 (2022) Frosini *et al.*, EPJA 58, 64 (2022) \rightarrow PGCM enough for relative properties

cea

• Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon}^{\sigma M}(q, K) P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where } \sigma \equiv Z, N, J, \pi$$

- Full method: PGCM + Perturbation Theory
 Frosini et al., EPJA 58, 62 (2022)

 Frosini et al., EPJA 58, 63 (2022)
 Frosini et al., EPJA 58, 64 (2022)
 → PGCM enough for relative properties
- Model space: $e_{max} = 6$, $e_{3max} = 18$, $\hbar\omega = 12$ Hamiltonian: Hüther N3LO Hüther *et al.*, PLB 808, 135651 (2019) Reference states $|\Phi\rangle$: real general Bogoliubov (VAPNP mininization) Collective coordinates *q*: $\beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}$

cea

• Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon}^{\sigma M}(q, K) P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where} \ \sigma \equiv Z, N, J, \pi$$

- Full method: PGCM + Perturbation Theory
 Frosini et al., EPJA 58, 62 (2022)

 Frosini et al., EPJA 58, 63 (2022)
 Frosini et al., EPJA 58, 64 (2022)
 → PGCM enough for relative properties
- Model space: $e_{max} = 6$, $e_{3max} = 18$, $h\omega = 12$ Hamiltonian: Hüther N3LO Hüther *et al.*, PLB 808, 135651 (2019) Reference states $|\Phi\rangle$: real general Bogoliubov (VAPNP mininization) Collective coordinates *q*: $\beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}$

\Rightarrow see Andrea's presentation & my presentation of last year

PGCM-based densities

- Determine average deformation of PGCM ground state: $ar{q}$
- One-body density: $\rho_m(x, y, z) = \sum_{st} \frac{\langle \Phi(\bar{q}) | s^+_{xyzst} P^Z P^N | \Phi(\bar{q}) \rangle}{\langle \Phi(\bar{q}) | P^Z P^N | \Phi(\bar{q}) \rangle}$
- Sample directly ρ_m or assuming α clusters

PGCM-based densities

- Determine average deformation of PGCM ground state: $ar{q}$
- One-body density: $\rho_m(x, y, z) = \sum_{st} \frac{\langle \Phi(\bar{q}) | s^+_{xyzst} P^Z P^N | \Phi(\bar{q}) \rangle}{\langle \Phi(\bar{q}) | P^Z P^N | \Phi(\bar{q}) \rangle}$
- Sample directly ρ_m or assuming α clusters

• In the 0-1% events:

$$\frac{v_{2}\{2\}_{\text{NeNe}}}{v_{2}\{2\}_{\text{OO}}} = \begin{cases} 1.170(8)_{\text{stat.}} (30)_{\text{syst.}}^{\text{Traj.}} (0)_{\text{syst.}}^{\text{str.}} (\text{NLEFT}) \\ 1.139(6)_{\text{stat.}} (27)_{\text{syst.}}^{\text{Traj.}} (28)_{\text{syst.}}^{\text{str.}} (\text{PGCM}) \end{cases}$$

- Suppression of ρ due to the large deformation of $^{\rm 20}{\rm Ne}$

$$\rho_{\rm Ne+Ne} - \rho_{\rm O+O} \propto \left(\beta_{2,16\,\rm O}^3 - \beta_{2,20\,\rm Ne}^3\right)$$

- Ratios/differences between 20 Ne + 20 Ne and 16 O + 16 O reduce uncertainties
- NLEFT and PGCM in good agreement

Conclusion

- Interface between low- and high-energy nuclear physics
 - Combines several state-of-the-art frameworks and software
 - NLEFT and PGCM give consistent results
 - Many things to understand or improve
 - \rightarrow PGCM: less phenomenological sampling of nucleon positions
 - \rightarrow more methods and interactions

Conclusion

- Interface between low- and high-energy nuclear physics
 - Combines several state-of-the-art frameworks and software
 - NLEFT and PGCM give consistent results
 - Many things to understand or improve
 - \rightarrow PGCM: less phenomenological sampling of nucleon positions
 - \rightarrow more methods and interactions
- We make predictions for the future ${}^{16}O + {}^{16}O$ run at LHC in 2025

Conclusion

- Interface between low- and high-energy nuclear physics
 - Combines several state-of-the-art frameworks and software
 - NLEFT and PGCM give consistent results
 - Many things to understand or improve
 - \rightarrow PGCM: less phenomenological sampling of nucleon positions
 - \rightarrow more methods and interactions
- We make predictions for the future ${}^{16}O + {}^{16}O$ run at LHC in 2025
- Proposal: combine the 16 O + 16 O run with a 20 Ne + 20 Ne run
 - Ratios/differences reduce considerably systematic uncertainties
 - $\diamond~$ Make use of the large ground-state deformation of ^{20}Ne
 - \Rightarrow Test hydrodynamic behavior in a small systems