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® Variational Monte Carlo with Neural Quantum States
° Qverview of VMC with NQS
° The Kronecker-Factored Approximate Curvature (KFAC)
® Augmented KFAC for VMC problems
° Scaling improvement from a Quasi-Newton approach
° Direction improvement from MINRES
® Decision geometry for VMC
° Game theory reformulation of VMC

° Testing decisional gradient descent



Variational Monte-Carlo in a nutshell

General Many-body problem

® Many-body system of interacting particles
° Input Hamiltonian: H

® Here focus on:

o Many-body system of A fermions

o Canonical ensemble at T=0

® Goal:

° Finding {E s ,|V,s) } s.t. H|V,) = FEys|Vys)

Variational approach

® Rayleigh-Ritz variational principle

(U[H|D) (Ve H| D)
(W) = (0T,

Variational ‘ Egs — MDDy <\If|\IJ>

reformulation
(V|H|P)
(V|¥)

\V/|\If> e JA,

W,ys) = argmin g,




Variational Monte-Carlo in a nutshell

General Many-body problem Technical challenges and solutions of VMC
® Many-body system of interacting particles

® |nfinite dimensional variational space Tradeoffs

° Input Hamiltonian: H

o Ansatz based wave-functions —— )  Biased estimation
® Here focus on:

® High-dimension integrals metopoisetal (1059

o Many-body system of A fermions
/ i o Markov Chain Monte-Carlo sampling ) Statistical noise

o Canonical ensemble at T=0 _ o
® Non-linear global optimization problem

® Goal:

o |terative linear/quadratic local optimization =——» Local minima
° Flndlng {EQS 7‘\IJQS> } s.T. H‘\Ij98> — Egs ‘\Pgs>

Variational approach
Monte-Carlo sampling

® Rayleigh-Ritz variational principle
(U[H|D) (Ve H| D)

Variational ‘ Egs = ming) (U0

reformulation
<\IJ‘H|\I]> Local optimization
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A simple yet |n3|ghtful many body problem

Many-body system . @.(x ) = (P(x, {X,,})

® Hamiltonian in 1D

1 1 Vi
o H=— —0)26_+ —xi2+ 0
AT o
Harmon ic trap

® Constraints:

H——J Sugned Log

1 Generalised Determinant
Slater Matrix

o Fixed particle number A

o Fixed temperature T =0



Many-body system
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L Gaussian interaction
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® Hamiltonian in 1D

1 1
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® Constraints:
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o Fixed particle number A
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o Fixed temperature T =0

NQS architecture

® Default architectural hyperparameters

o  Number of layers: L =2
o Width of each layer: H = 64
o  Number of determinants: D = 1

o Total number of parameters ~ 10 000
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A simple yet insightful many-body problem
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Many-body system

(xi - xj)z
cXp 20_(%

L Gaussian interaction

® Hamiltonian in 1D
1
—250%,.+2 SR
i l J <j
Harmonic trap

® Constraints:

Vo

\/Zmo

o H=

o Fixed particle number A

o Fixed temperature T =0

NQS architecture

® Default architectural hyperparameters

o  Number of layers: L =2
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Width of each layer: H = 64
Number of determinants: D = 1

Total number of parameters ~ 10 000

® Permutation equivariant layers
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Permutation of input rows
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Propagates all the way to the orbitals

Permutation of output rows

Final layer with determinant:

equivariance = antisymmetry
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® Variational Monte Carlo with Neural Quantum States

° Qverview of VMC with NQS

° The Kronecker-Factored Approximate Curvature (KFAC)



General strategy for non-linear optimizers

Definition of the problem
® Let E(0) be our cost function
® Goal

o E* = mingerp E(O)
E(0)

o 0% = argmin,_p,

® Problem
o D> 10 000

o E(0) highly non-linear

1D example

EO)




General strategy for non-linear optimizers

Definition of the problem General strategy
® Let E(6) be our cost function ® Complicated problem
® Goal Many trivial problems :>
o E* = mingerp E(6) ® Sequence of linear/quadratic optimizations
o 0% = argmin,_r, E(0)
® Problem
o D > 10 000

o E(O) highly non-linear
1D example

EO)




General strategy for non-linear optimizers

Definition of the problem General strategy
® Let E(6) be our cost function ® Complicated problem
® Goal Many trivial problems :>
o E* = mingepp E(0) ® Sequence of linear/quadratic optimizations
o 0% = argmin,_r, E(0)
® |terative algorithm
® Problem
o D> 10 000 °© 0,41 =0, +argmins_. M,(0)
o E(0) highly non-linear ° Ky =E(0,11)

1
o — _ 5T T
1D example where, M,(0) = 25 Qo+L0o+C

\ and 7, = region where M, (0) is trusted
E(9)

° Update M (0) and T,

@ In practice: 7, is replaced by a regulator

1
o M (5) « M (5) + 5’1” S'R S , with R >0

° Tikhonov regularization



General strategy for non-linear optimizers

Definition of the problem General strategy
® Let E(6) be our cost function ® Complicated problem
® Goal Many trivial problems :>
o E* = mingepp E(0) ® Sequence of linear/quadratic optimizations
o 0% = argmin,_r, E(0)
® |terative algorithm
® Problem -
o D> 10 000 °© 0,41 =0, +argmins_. M,(0)
o E(0) highly non-linear ° Ky =E(0,11)

1
o — _ 5T T
1D example where, M,(0) = 25 Qo+L0o+C

\ and 7, = region where M, (0) is trusted
E(9)

° Update M (0) and T,

@ In practice: 7, is replaced by a regulator

1
o M (5) « M (5) + 5/1,1 S'R S , with R >0

° Tikhonov regularization

Optimizers discussed here

® Gradient descent (~ Adam)
o M (5)=VE®) s+ E®,)
o T,={8: |16, <allVEG)II,}
°© «a = learning rate

= o6, =—a VE@®)




General strategy for non-linear optimizers

Definition of the problem General strategy
® Let E(6) be our cost function ® Complicated problem
® Goal Many trivial problems :>
o E* = mingepp E(0) ® Sequence of linear/quadratic optimizations
o 0% = argmin,_r, E(0)
® |terative algorithm
® Problem
o D> 10 000 °© 0,41 =0, +argmins_. M,(0)
o E(0) highly non-linear ° Ky =E(0,11)

1
o — _ 5T T
1D example where, M,(0) = 25 Qo+L0o+C

\ and 7, = region where M, (0) is trusted
E(9)

° Update M (0) and T,

@ In practice: 7, is replaced by a regulator

1
o M (5) « M (5) + 5/1,1 S'R S , with R >0

° Tikhonov regularization

Optimizers discussed here

® Gradient descent (~ Adam)
o M (5)=VE®) s+ E®,)
o T,=1{8: ||6]l,<alIVEG)I,}

°© «a = learning rate

= o6, =—a VE@®)

® Natural gradient descent

°© Fisher information metric
Fi(p) = Ey., [a@ In p(X) 9 In p(X)]

o T(r)={5: 6"F6,)6 < r*}
1
o & M(5) = E5TF5 + VE@©,)"s + E@©,)

- 5 =—F40) VE®,)



General strategy for non-linear optimizers

Definition of the problem General strategy Optimizers discussed here
® Let E(f) be our cost function ® Complicated problem ® Gradient descent (~ Adam)
® Goal Many trivial problems :> o M,(6)=VE@®,)"s+ E®,)
o T =406: ||o]], <L VE6
o E* = mingerpr E(O) ® Sequence of linear/quadratic optimizations =101 118l <al[VEG)], )
°© «a = learning rate
o @* = argmin, _p.» E(O) = 5 =—aVE®)
® |terative algorithm
© Problem @ Natural gradient descent
o D> 10 000 ° Hn+1 =0, + argmméeTn M, (0) o Fisher information metric

F.(p)=Eyx., |0 l_lnp(X) djlnp(X)
o E(0) highly non-linear ° E, = E0,) )= % )P
1 o T(r)={5: 6"F6,)5<r*}

o where, M, (0) = —5'05+L's+ C 1
1D example 2 o & M,(6) = 8"F5+ VE®,) 5+ E6,)
\ and 7, = region where M, (0) is trusted
E®) - 5 =—F40) VE®,)

° Update M (0) and T,
® KFAC (Kronecker-Factored Approximate Curvature)

° ANNs = D > 10 000

o F~Y@0) VE®, = O(D?)

o M (6) < M (6) + l/ln 5TRn5 . with R, > 0 °© KFAC ~ crude approx of the Fisher metric
2 ° Direction update using KFAC Fisher

° Tikhonov regularization © Scaling update using exact Fisher

@ In practice: 7, is replaced by a regulator




Direct application of KFAC

KFAC optimizer
[Martens, Grosse (20

, Grosse (2015)]

E(6), VE(O)




Direct application of KFAC

KFAC: A

KFAC optimizer

[Martens, Grosse (2015)]

E(6), VE(O)

KFAC
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Direct application of KFAC

KFAC: A =2, V, = —10

KFAC optimizer

[Martens, Grosse (2015)]

E(6), VE(O)

2.00—————
- —— KFAC

- | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0.005 50 100 150 200 250

Epochs

Extensive testing

300

50

® Sometimes works nicely, sometimes unstable, sometimes fake convergence

= Difficult to predict performance

= Not reliable optimization = How to improve it ?

100



Outline

@ Variational Monte Carlo with Neural Quantum States
° Qverview of VMC with NQS
° The Kronecker-Factored Approximate Curvature (KFAC)

® Augmented KFAC for VMC problems

° Scaling improvement from a Quasi-Newton approach



Alternative approach to KFAC shortcomings

Recap: KFAC optimizer
[Martens, Grosse (2015)]

(

E(0), VE(O)




Alternative approach to KFAC shortcomings

Improving scaling of the update

Recap: KFAC optimizer ® Analysis
|

[Martens, Grosse (2015)

E@), VE(O)

o Original argument for KFAC: ' ~ Hessian

o Only valid for supervised learning problems

o VMC # supervised learning

® Proposed solution

© Just use a better quadratic model !



Alternative approach to KFAC shortcomings

Improving scaling of the update

Recap: KFAC optimizer ® Analysis

[Martens, Grosse (2015)]

E@), VE(O)

o Original argument for KFAC: ' ~ Hessian

o Only valid for supervised learning problems

o VMC # supervised learning

® Proposed solution

© Just use a better quadratic model |

Quasi-Newton KFAC

® SU perVised |earning: [Martens (2020), Amari (2016)]

o F(0) ~ Cost function's Hessian + 0y dy In|¥y(X)| =0

® In our case: cost function = E(6)

® Hessian:
09,09, E(0) = 2IE [(EL,9 — E(0)) g, 0p, In | Vg (X)|]
+4E [(EL,g — E(0)) 0, In [Wg(X)|Dg, In Wy (X)]]
+ 2K [0g, E1,0(X)0g, In |¥y(X)|]




Alternative approach to KFAC shortcomings

Improving scaling of the update

Recap: KFAC optimizer ® Analysis

[Martens, Grosse (2015)]

E@), VE(O)

o Original argument for KFAC: ' ~ Hessian

o Only valid for supervised learning problems

o VMC # supervised learning

® Proposed solution
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Quasi-Newton KFAC
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Alternative approach to KFAC shortcomings

Improving scaling of the update

Recap: KFAC optimizer ® Analysis

[Martens, Grosse (2015)]

E@), VE(O)

o Original argument for KFAC: ' ~ Hessian

o Only valid for supervised learning problems

o VMC # supervised learning

® Proposed solution

© Just use a better quadratic model |

Quasi-Newton KFAC

® SU perVised |earning: [Martens (2020), Amari (2016)]

o F(0) ~ Cost function's Hessian + 0y dy In|¥y(X)| =0

® In our case: cost function = E(6)

® Hessian:

Op, 0p, E(0) = 2EHErpo—F{t ettt

{+4E (Er,g— E(0)) 0, In |Wo(X)|0p, In |Ws(X)|]

+ 2E [0g, Er,0(X)0p, In [We(X))]]

Defines our quasi-Hessian H(0)



Alternative approach to KFAC shortcomings

Improving scaling of the update

Recap: KFAC optimizer ® Analysis QN-KFAC optimizer

[Martens, Grosse (2015)]

E@), VE(O)

o Original argument for KFAC: ' ~ Hessian

o Only valid for supervised learning problems E0), VE(O)
o VMC # supervised learning

® Proposed solution

© Just use a better quadratic model |

Quasi-Newton KFAC

® SU perVised |earning: [Martens (2020), Amari (2016)]

o F(0) ~ Cost function's Hessian + 0y dy In|¥y(X)| =0

® In our case: cost function = E(6)

® Hessian:

Op, 0p, E(0) = 2EHErpo—F{t ettt

{+4E (Er,g— E(0)) 0, In |Wo(X)|0p, In |Ws(X)|]

+ 2E [0g, Er,0(X)0p, In [We(X))]]

Defines our quasi-Hessian H(0)



Impact of new re-scaling on convergence

3.50

3.20

=975
m B

2.00f

KFAC vs QN-KFAC: A =2, I, = —10

1.6

KFAC
Cl
HF

QN-KFAC |

Epochs

KFAC vs QN-KFAC: A =5, Vi = —10

00 800

3.00f

2.925}

2.50F |

KFAC
HF

QN-KFAC -

KFAC vs QN-KFAC: A =3, V[, =20

| S 10

— QN-KFAC

— KFAC :
Cl

------ HF

QN-KFAC vs KFAC

® QOverall Improvements

©)

@)

Energy fluctuations much reduced

Reduction of cases where it get stuck in local minima

@ But not perfect

O

O

O

Still some instabilities (not shown here because large 4;,..)
Can take time to get out of local minima

Slow final convergence



Outline

® Variational Monte Carlo with Neural Quantum States

° Qverview of VMC with NQS

° The Kronecker-Factored Approximate Curvature (KFAC)

® Augmented KFAC for VMC problems

° Scaling improvement from a Quasi-Newton approach

° Direction improvement from MINRES
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Testing direction improvement with MINRES

QN-KFAC optimizer

y reg
A

A reg

5I’Z€W — aA + /’léprev
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Testing direction improvement with MINRES

QN-MR-KFAC optimizer

E(6), VE()

y reg

MINRES

) reg
]
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Testing direction improvement with MINRES

N | L I
— Nyr =0 Nyr = 25 Cl 13
QN-MR-KFAC optimizer 1.50F —— Nyr=1 —— Nyg=50  -—-—- HF
| 25: Nur = :
E(0), VE(0) ="M | A=2 V,=-10
1.00F % '
S _1 0.75}
Frpac (0) :
0.50L
y reg
2.0
H(6) 3
MINRES L8E |
1.6}
=
A reg @ i A=4, VO=_10
1.4
1.2} AN b A M Lt g
10' . | . . . . | . . . . | . . . . | . . . . il
' 200 400 600 300 1000
Epochs
M . . . . .
Opeyy = AA™ + 110, Improving KFAC estimation of direction update

® Test: take A as initial guess for MINRES on F@O) .x=VE®) => Improved direction A

“ ® QObservation: MINRES = Better accuracy! (and in general more stable)




Testing pure NGD with MINRES

Natural Gradient Descent (NGD)

MINRES A reg

M
a, U

14



Testing pure NGD with MINRES

Natural gradient Descent (NGD): A =2, V}) =

2.00—

Natural Gradient Descent (NGD) -

1.50
'

1.25

Epochs

- | | | | | | | | | | | | | | | | | | | | | | | | | |
0.04; 100 200 300 100 500

14



Testing pure NGD with MINRES

Natural gradient Descent (NGD): A =2, V; = —10

2.00—

Natural Gradient Descent (NGD) -

150}
E(0), VE(0) E

WU T

: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | :
0.04; 100 200 300 100 500 500
Epochs

Failure of Natural Gradient Descent (NGD)

® Testing information geometry with MINRES:

o Observation: even when using exact Fisher F(d) — huge instabilities

° Confirms relevance of H, and suggests that information geometry is sub-optimal for VMC

® Can we find better than the Fisher metric?
o Quasi-Hessian H, # PSD = lead to instabilities as well
= Better geometry for VMC?




Outline

® Variational Monte Carlo with Neural Quantum States
° Qverview of VMC with NQS
° The Kronecker-Factored Approximate Curvature (KFAC)
® Augmented KFAC for VMC problems
° Scaling improvement from a Quasi-Newton approach
° Direction improvement from MINRES
® Decision geometry for VMC
° Game theory reformulation of VMC

° Testing decisional gradient descent
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From information to decision geometry

Supervised learning problem

® Minimize L(0) = Ey., [_lan(X)] (cross-entropy loss)
°© g = target distribution, p, = model to optimize

°© Equivalent to “fitting data points” problems

16



From information to decision geometry

Supervised learning problem 16

® Minimize L(0) = Ey., [—lnpg(X)] (cross-entropy loss)
°© g = target distribution, p, = model to optimize

°© Equivalent to “fitting data points” problems

Natural gradient descent [Amari (1997)]

® Local problem: solve for 6 such that [|6]]. = cst

® Kullback-Leibler divergence and the Fisher matrix
o DKL(Pyp2) = Exoy, [~ py(X) = (=In p(X))]

1
° DkL(pgPoss) = EéTF(Q)é + O(6°) |Information geometry

= Fisher metric: F(0)y, = Ey.,, [ael In py(X) 9y, hlp@(X)]

= Syep=—F1(0) VL)



From information to decision geometry

Supervised learning problem

® Minimize L(0) = Ey., [—lnpg(X)] (cross-entropy loss)
°© g = target distribution, p, = model to optimize

°© Equivalent to “fitting data points” problems

Natural gradient descent [Amari (1997)]

® Local problem: solve for 6 such that [|6]]. = cst

® Kullback-Leibler divergence and the Fisher matrix
° DkL(p1,py) = Exop, [_lnpz(X) - (—lnp1(X))]

1
° DkL(pgPoss) = EéTF(Q)é + O(6°) |Information geometry

= Fisher metric: F(0)y, = Ey.,, [ael In py(X) 9y, hlp@(X)]

= Syep=—F1(0) VL)

Efficient implementation
[Martens, Grosse (2015)]

® KFAC (Kronecker-Factored Approximate Curvature)

o KFAC ~ crude approximation of the Fisher metric
° Direction update using KFAC Fisher
© Scaling update using exact Fisher

= Fast and reliable convergence



From information to decision geometry

Supervised learning problem Non supervised learning problem

® Minimize L(0) = Ey., [—lnpg(X)] (cross-entropy loss) ® Minimize h(0) = — Ex_, [SX, pg)] = — S(pg. Pp)
°© g = target distribution, p, = model to optimize °© § = scoring rule, py, = model to optimize

°© Equivalent to “fitting data points” problems °  Very general problem

Natural gradient descent [Amari (1997)]

® Local problem: solve for 6 such that [|6]]. = cst

® Kullback-Leibler divergence and the Fisher matrix
° DkL(p1,py) = Exop, [_lnpz(X) - (—111191(X))]

1
° DkL(pgPoss) = EéTF(H)é + O(6°) |Information geometry

= Fisher metric: F(0)y, = Ex., [091 In py(X) 9y, lnpg(X)]

= Syep=—F1(0) VL)

Efficient implementation
[Martens, Grosse (2015)]

® KFAC (Kronecker-Factored Approximate Curvature)

o KFAC ~ crude approximation of the Fisher metric
° Direction update using KFAC Fisher
© Scaling update using exact Fisher

= Fast and reliable convergence



From information to decision geometry

Supervised learning problem Non supervised learning problem

® Minimize L(0) = Ey., [-Inpy(X)| (cross-entropy loss) ® Minimize h(0) = — Ex_, [SX,pp)] = — S(pg. Py)

°© g = target distribution, p, = model to optimize °© § = scoring rule, py, = model to optimize
°© Equivalent to “fitting data points” problems °  Very general problem
Natural gradient descent [Amari (1997)] Decision geometry [Dawid (2006)]

® Necessary condition

® Local problem: solve for 6 such that [|6]]. = cst

o Vp,q, S(p,p) <S(p,q) = proper scoring rule

. . . . Gneiting, Raftery (2007
® Kullback-Leibler divergence and the Fisher matrix [Gneiting, Raftery (2007)]

o DKL(p1,py) = Exo,, [~Inpy(X) — (=Inpy(X))]

1
° Dk (pPgPoss) = EéTF(9)5 + O(6°) |Information geometry

® Game-theory generalizations

o Entropy: H(p) = S(p, p)
o Cross-entropy: H(p,q) = S(p, q)

= Fisher metric: F(6)y4 = Ey., [091 In py(X) 9y, lnpg(X)] o Divergence: Dy(p,q) = S(p,q) — S(p,p)

1
= ONGD = — F~(0) VL) o Ds(pg.Poss) = 55TGS(9)5 + O(6°)| Decision geometry

= Spap = — G5 1(0) Vh(O)

Efficient implementation
[Martens, Grosse (2015)]

® Recovers information geometry: S(p,x) = — Inp(x
® KFAC (Kronecker-Factored Approximate Curvature) g y: S(p, x) p(x)

o KFAC ~ crude approximation of the Fisher metric
° Direction update using KFAC Fisher
© Scaling update using exact Fisher

= Fast and reliable convergence



From information to decision geometry

Supervised learning problem Non supervised learning problem

® Minimize L(0) = Ey., [-Inpy(X)| (cross-entropy loss) ® Minimize h(0) = — Ex_, [SX,pp)] = — S(pg. Py)

°© g = target distribution, p, = model to optimize °© § = scoring rule, py, = model to optimize
°© Equivalent to “fitting data points” problems °  Very general problem
Natural gradient descent [Amari (1997)] Decision geometry [Dawid (2006)]

® Necessary condition

® Local problem: solve for 6 such that [|6]]. = cst

o Vp,q, S(p,p) <S(p,q) = proper scoring rule

. . . . Gneiting, Raftery (2007
® Kullback-Leibler divergence and the Fisher matrix [Gneiting, Raftery (2007)]

o DKL(p1,py) = Exo,, [~Inpy(X) — (=Inpy(X))]

1
° Dk (pPgPoss) = EéTF(Q)ﬁ + O(6°) |Information geometry

® Game-theory generalizations

o Entropy: H(p) = S(p, p)
o Cross-entropy: H(p,q) = S(p, q)

= Fisher metric: F(6)y4 = Ey., [091 In py(X) 9y, lnpg(X)] o Divergence: Dy(p,q) = S(p,q) — S(p,p)

1
= ONGD = — F~(0) VL) o Ds(pg.Poss) = 55TGS(9)5 + O(6°)| Decision geometry

= Spap = — G5 1(0) Vh(O)

Efficient implementation
[Martens, Grosse (2015)]

® Recovers information geometry: S(p,x) = — Inp(x
® KFAC (Kronecker-Factored Approximate Curvature) g y: S(p, x) p(x)

o KFAC ~ crude approximation of the Fisher metric Open questions

° Direction update using KFAC Fisher ® When is a scoring rule leading to efficient DGD?

© Scaling update using exact Fisher SN ———

= Fast and reliable convergence o



From information to decision geometry
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Efficient implementation
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® KFAC (Kronecker-Factored Approximate Curvature)

o KFAC ~ crude approximation of the Fisher metric
° Direction update using KFAC Fisher
© Scaling update using exact Fisher

= Fast and reliable convergence

Non supervised learning problem

O] Minimize h(@) = — [EXNPQ[S(X’pQ)] = — S(pg,pe)
°© § = scoring rule, py,= model to optimize

°  Very general problem

Decision geometry [Dawid (2006)]

® Necessary condition

o Vp,q, S(p,p) <S(p,q) = proper scoring rule
[Gneiting, Raftery (2007)]
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o Entropy: H(p) = S(p, p)
o Cross-entropy: H(p,q) = S(p, q)

o Divergence: Dy(p,q) = S(p,q) — S(p,p)
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o Dy(pg,Poss) = 55TGS(9)5 + O(5°)| Decision geometry
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® Recovers information geometry: S(p, x) = — In p(x)

Open questions

® When is a scoring rule leading to efficient DGD?
® Efficient implementation?

® ..

Variational Monte Carlo problem 16

® Minimize E(0) = [EX~|\P9|2[EL,9(X)]

1
+ V(X)

2

o Quantum many-body problem

Game-theory reformulation of VMC

® Natural scoring rule

o Vpg, X, Syyc(x, pg) = — Ep o(x) — Proper scoring rule

® Induced geometry (Divergence)

1 2
o Dyyclppp) =5 2 E [(ax,. In py(X) = 0, In py(X) ) ]

o Gvmc(@go, = %Z E [(%laxi In py(X )> <06?Zaxi In py(X )>]

= Sypc = — Giy(0) VEO)

® Physically motivated geometry

Dyyic(Pg: Po) = Exp, [EL,e(X ) — Ep p(X )]
~ F(0) — E(@') (up to re-weighting)
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o KFAC ~ crude approximation of the Fisher metric
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= Fast and reliable convergence
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[Gneiting, Raftery (2007)]

® Game-theory generalizations

o Entropy: H(p) = S(p, p)
o Cross-entropy: H(p,q) = S(p, q)

o Divergence: Dy(p,q) = S(p,q) — S(p,p)
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® When is a scoring rule leading to efficient DGD?
® Efficient implementation?
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Variational Monte Carlo problem 16

® Minimize E(0) = [EX~|\P9|2[EL,9(X)]

+ V(X)

o Quantum many-body problem

Game-theory reformulation of VMC

® Natural scoring rule

o Vpg, X, Syyc(x, pg) = — Ep o(x) — Proper scoring rule

® Induced geometry (Divergence)

1 2
o Dyyclppp) =5 2 E [(ax,. In py(X) = 0, In py(X) ) ]

o Gvmc(@go, = %Z E [(aelaxi In py(X )> <06?Zaxi In py(X )>]

= Sypc = — Giy(0) VEO)

® Physically motivated geometry

Dyyic(Po, Po) = Ex.p, [EL,e(X ) — Ep p(X )]
~ F(0) — E(@') (up to re-weighting)

Practicable optimizer?

® How good is it strategically? (Convergence in epochs)

® Can it be performant? (Overall wall-time and stability)



Decision vs information geometry

Natural Gradient Descent Decisional Gradient Descent

E0). VE(O) E0), VE(O)




Decision vs information geometry
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NGD vs DGD: A =2, V, = —10

Natural Gradient Descent Decisional Gradient Descent

— DGD -
E(0), VE©) o] 2O
l Cl
—————— HF
00 60 30 7000
Epochs
Results

- ® Stability: huge improvement from decision geometry in all cases
¥
0

= Much better starting point for designing optimizers for VMC



Comparing with our previous best optimizer

QN-MR-KFAC Decisional Gradient Descent

E0), VE(O) E(), VE(0)

Frpac (0)7!
y reg
MINRES |
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Comparing with our previous best optimizer

18
QN-MR-KFAC QN-MR-KFAC vs DGD: A =2, Vj = —10 Decisional Gradient Descent
E@@), VEO) — DG : E0), VE(0)
——— QN-MR-KFAC -
Cl -
—————— HF
00 60 %00 1000
Epochs
Results

® Stability: DGD more stable than any other refinement of KFAC (not shown here)

® Accuracy and speed: DGD on par with QN-MR-KFAC




Comparing with Adam
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Decisional Gradient Descent

E0), VE(O)

Adam

m. — 61 Mp—1 + (1 — 61) VE(Hn)
h (1-57)

_ Basna+ (1 ) (VE(0))?

Sn




Comparing with Adam

Adam vs DGD: A =5, V;, = —20 Decisional Gradient Descent

—— Adam —— DGD = - HF E(0), VE(O)

llrlll

Adam

m. — 61 Mp—1 + (1 - 51) VE(HTL)
' (1-57)

_ B su+ (1= B) (VE(6,))’

Sn

| | ' ! | A | ' | A I | ' | A I | | A I I 7 A I T
5000 10000 15000 20000 25000 30000
Epochs

Results

V' Accuracy: DGD systematically over perform Adam
V' Speed: DGD converges 10-100x faster than Adam in #epochs

X Wall-time: Very naive implementation of DGD = too early to quantify
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Testing across phenomenologies

Convergence of DGD:

22 out of the 25 cases

8.8f
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esting across phenomenologies

20

Convergence of DGD:
22 out of the 25 cases

3.5 C : ---::53-;,-;;_.7,___7_:7__7_ _

14.0F S
3.0F . .

- 13.5 Confirms the great potential
2.5 .

130l of DGD for future optimizers!
2.0
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Conclusions

VMC with neural networks

® Rapidly evolving field!

® Competitive with CCSD(T) in quantum chemistry

® Realistic nuclear systems now being investigated
o On-going work to reach A ~ 100 nuclei

o See Alessandro’s talk!

® More systematic studies to be performed
© Numerical implementation to be optimized

°© Optimal architecture for nuclear systems?

°© Numerical complexity (time/memory)
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Conclusions

VMC with neural networks

® Rapidly evolving field!

® Competitive with CCSD(T) in quantum chemistry

® Realistic nuclear systems now being investigated
o On-going work to reach A ~ 100 nuclei

o See Alessandro’s talk!

® More systematic studies to be performed
© Numerical implementation to be optimized
°© Optimal architecture for nuclear systems?

°© Numerical complexity (time/memory)

The optimizer: a critical part

® Simple many-body systems = easy to test new ideas

® A promising novel optimizer based on decision geometry!

@)

Motivated by deficiencies of KFAC for VMC

Game theory re-formulation of VMC = Decisional gradient descent
Accurate, stable and fast

Simplest implementation = solid foundation for future improvements

® With many potential refinements!

O

O

@)

O

Hessian-free-like = Inspiration for many potential algo improvements
KFAC-like approximation on decision metric?
Adapting the geometry for different many-body problems?

Other ML problems? Can it be made as versatile as Adam?
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Keeping biases under controlled

V()=-20 V0=-1O VQ=O Vo= 10 V0=20
Testbed for our FNN X 157 i ' ' — VANN ' A=2
| | Space O'O —_— 0.5
- : > 1.0} - --- Diag |1 i
® Two different phenomenologies = . HE , L
= n
UMM
o VO < —1 = Boson-Fermion duality [Girardeau and Olshanii, arXiv:cond-mat/0309396] O 0.0 N )Y\
[Valiente, PRA 103, L021302 (2021)] 00
: L =< — VANN A=3
° Vy>1 = Wigner crystallization = 15} - Diag | - Go=0.5
. . . >10 ! — HE ! .
® Benchmarking against other calculations 5 : r Roa
A A
°© Only for A =2 : semi-analytical calculation (= Space) O ol /AR A S
[Busc.h, Englert, Rzazewski and V\filkens, Found. Phys. 28 549 (1998)] />? > i — VANN I i A=4
o For A > 2: full Cl in HO (= Diag) = —-- Diag 0o =0.5
[Rojo-Francas, Polls and Julid-Diaz, Mathematics 8 1196 (2020)] ~ _ HF
>
° For A > 2: Hartree-Fock (= HF) @ gl _
a
ol S
Test result [See James Keeble's talk for more details] ol — AN | | A=5
. < --- Diag Op = 0.5
= Agreement with exact results = — HF
. Ry -
v Strong and weak regimes = m
: : . a
v Repulsive and attractive regimes 0— —
~ — VANN
= Access to different many-body observables < 5t : : " Do) -
- _
v One and two-body densities (not shown here) @ 4| - _ m _ /\/WV\/\ _
S /
a , - Y o - EAREED
= Ansatz biased is under controlled 06-2-20 2 4 6-4-20 2 4 6-4-20 2 4 6-4-20 2 4 6-4-20 2 4 6
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Natural gradient descent
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Arbitrariness of gradient descent

® Trust regions depends on choice of a norm

® Direction depends on choice of a parametrization

® |s there a “best” choice ?

= Natural gradient



Arbitrariness of gradient descent
® Trust regions depends on choice of a norm

® Direction depends on choice of a parametrization

® |s there a “best” choice ?

= Natural gradient

Information geometry
[For a review: Amari (2016)]

® Consider the manifold of probability measures

(for a fixed o-algebra of events)

® Chentsov's theorem (1972)

° There is a unique Riemannian metric that is invariant

under sufficient statisticS <— ~ lossless re-parametrizations

o This is the Fisher information metric
o Fy(p) = Ex., [aei In p(X) 9 In p(X)]

® F(p) = quadratic approximation of Kullback-Leibler divergence

Natural gradient descent
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® |Local problem
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- 5, =—aF'(0)VE®)
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Arbitrariness of gradient descent
® Trust regions depends on choice of a norm

® Direction depends on choice of a parametrization

® |s there a “best” choice ?

= Natural gradient

Information geometry
[For a review: Amari (2016)]

® Consider the manifold of probability measures

(for a fixed o-algebra of events)

® Chentsov's theorem (1972)

° There is a unique Riemannian metric that is invariant

under sufficient statisticS <— ~ lossless re-parametrizations

o This is the Fisher information metric
o Fy(p) = Ex., [aei In p(X) 9y In p(X)

® F(p) = quadratic approximation of Kullback-Leibler divergence

Natural gradient descent

Natural gradient descent

® |Local problem

o M (8)=VE®)'s+E®,)

. _[s5. sT 2
Tn(r) o {5 Y F(Hn) 0 57 } Natural gradient definition

- 5 =—aFY0)VEO) <«—

® Still not clear if the “best” but

° Independent from parametrization
o F(p) 20 = Bounded/Stable updates
o Argued to be close to a 2Nd order optimizer [Martens, 2020]

= Motivates the use of a = 1

28
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® Trust regions depends on choice of a norm

® Direction depends on choice of a parametrization

® |s there a “best” choice ?

= Natural gradient

Information geometry
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Tn(r) o {5 Y F(Hn) 0 57 } Natural gradient definition

- 5 =—aFY0)VEO) <«—

® Still not clear if the “best” but

° |ndependent from parametrization Only for supervised learning

o F(p) 20 = Bounded/Stable updates
o Argued to be close to a 2Nd order optimizer [Martens, 2020]

= Motivates the use of a = 1
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Natural gradient descent

Arbitrariness of gradient descent Natural gradient descent
® Trust regions depends on choice of a norm ® Local problem
® Direction depends on choice of a parametrization o M (8) = VE@®) 6+ E®6)

® |s there a “best” choice ?
; T”(r) = {5 : 5TF(6”7) 0 = rz} Natural gradient definition

» 0, =—0 F‘l(é’n) VE@©,) 4_/
Information geometry

[For a review: Amari (2016)} ® Still not clear if the “best” but
® Consider the manifold of probability measures

= Natural gradient

° |ndependent from parametrization Only for supervised learning
(for a fixed o-algebra of events)
o F(p) 20 = Bounded/Stable updates
® Chentsov's theorem (1972) nd o
‘ ’ o Argued to be close to a 2" order optimizer [Martens, 2020]

° There is a unique Riemannian metric that is invariant _
= Motivates the use of a =1

under sufficient statisticS <— ~ lossless re-parametrizations

° This is the Fisher information metric ® What about VMC problems ? (# supervised learning)
0 Fij(p) = [EXNp [agihlp(X) (39].1111?()() o Stochastic reconfiguration method empirically efficient [Park et al. (2020)]

: : : 2
) —
® F(p) = quadratic approximation of Kullback-Leibler divergence Equivalent to natural gradient descent with p = ['¥y|



State-of-the-art

® Two main optimizers for Neural Quantum States:

@)

©)

® Known problems with KFAC: [Pfau, Spencer, Matthews and Foulkes, Phys Rev Res 2, 033429 (2020)]

Adam — Stable but slow ( ~ 10 000 epochs to get a good accuracy)

KFAC — Fast and more accurate on paper!

@)

@)

Fine-tuning hyperparameters is critical

Oscillates between slow and unstable convergence

® From our own practice:

©)

©)

KFAC comes with several adjustments to compensate its instabilities

Case by case fine-tuning is required to get decent results with no guarantee

1 1 1
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| 1t 1T
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KFAC: a promising new optimizer

[Pfau, Spencer, Matthews and Foulkes, Phys Rev Res 2, 033429 (2020)]
He Li Be
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Kronecker-Factored approximation

Optimizing neural networks

Number of parameters N ~ 10 000

Numerical complexity per epoch critical
Exact natural gradient descent = O(N?)

KFAC goal [Martens and Grosse (2015)]

©)

©)

Lower complexity as much as possible

While keeping number of epochs to converge ~ constant

30



Kronecker-Factored approximation

Optimizing neural networks

® Number of parameters N ~ 10 000

® Numerical complexity per epoch critical
® Exact natural gradient descent = O(N?)

® KFAC goal [Martens and Grosse (2015)]

° Lower complexity as much as possible

°  While keeping number of epochs to converge ~ constant

Kronecker factorization rationale
[Martens and Grosse (2015)]

o Fi0)=4xEy [09,. In | ¥,(X)| 9 In| ¥y(X) |]

® Can be reformulated

oln|¥,(X)|
0Wilj

°© So F=4XE [(aa") ® (ee")|

o Chain rule = =(a_,Q¢); = F=4XE[a®e) @Qe)]

= Frerac~4XE [aaT] & [eeT]

® Further approximation: block-diagonal between layers

- F%FAC ~ 4 X [E [al_lalT_ll & E [elelT] Much easier to inverse !
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Kronecker-Factored approximation

Optimizing neural networks

® Number of parameters N ~ 10 000

® Numerical complexity per epoch critical
® Exact natural gradient descent = O(N?)

® KFAC goal [Martens and Grosse (2015)]

° Lower complexity as much as possible

°  While keeping number of epochs to converge ~ constant

Kronecker factorization rationale
[Martens and Grosse (2015)]

o Fi0)=4xEy [09,. In [ ¥,(X)| 0 In| ¥,y(X)| ]

® Can be reformulated '( Backward sensitivities
dln| ¥y, (X)|

o Chain rule = = (a;_; ®€1),j = F=4XE [(a®e) (a®€)T]

oW},
° So F=4XxE [(aaT) ® (eeT)] \— Activities
= Frerac=~4XE [aaT] & [eeT]

® Further approximation: block-diagonal between layers

- F%FAC ~ 4 X [E [al_lalT_ll & E [elelT] Much easier to inverse !
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Kronecker-Factored approximation

Optimizing neural networks Example on MNIST database |[Martens, Grosse (2015)]

Number of parameters N ~ 10 000
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Kronecker factorization rationale
[Martens and Grosse (2015)]

o Fi0)=4xEy [a@ In [ ¥,(X)| 0 In| ¥,y(X)| ]

® Can be reformulated '( Backward sensitivities
dln|Wy(X)|
oW!

° So F=4XE [(aa") ® (ee")] L Activities
= e ~4XE [aaT] & E [eeT]

o Chain rule =(_1®¢); = F=4XE [(a@ e) (a® e)T]

Inverse KFAC Fisher: (Frpqe)™!  Inverse block KFAC Fisher: (Frpsqc)™!
® Further approximation: block-diagonal between layers

- I:”%FAC ~ 4 X [E [al_lalT_l] & E [elelT] Much easier to inverse !



Kronecker-Factored approximation

Optimizing neural networks Example on MNIST database |[Martens, Grosse (2015)]
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°©  While keeping number of epochs to converge ~ constant

Kronecker factorization rationale
[Martens and Grosse (2015)]

o Fi0)=4xEy [a@ In [ ¥,(X)| 0 In| ¥,y(X)| ]

® Can be reformulated '( Backward sensitivities
dln|Wy(X)|
oW!

° So F=4XE [(aa") ® (ee")] L Activities
= e ~4XE [aaT] & E [eeT]

o Chain rule =(_1®¢); = F=4XE [(a@ e) (a® e)T]

Inverse KFAC Fisher: (Frpqe)™!  Inverse block KFAC Fisher: (Frpsqc)™!
® Further approximation: block-diagonal between layers

-l ~ T T . - I . .
= Frrac~4XE [al_lal_l] Q [ [elel] Much easier to inverse ! Crude but necessary approximation !
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Mitigating the crudeness of KFAC

General strategy

® KFAC update: §, = a X A, with A = — (Frrs(6,))" VE@©)

°© When A, is a good direction: take a large
°© When A, is a bad direction: take a small

® How to quantify it 7
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® KFAC update: §, = a X A, with A = — (Frrs(6,))" VE@©)

° When A, is a good direction: take a large
°© When A, is a bad direction: take a small

® How to quantify it 7

Update evaluation

® Define a local quadratic model: use the exact Fisher F(6)

o M(5) = %5TF(9,1)6 + VE@®,)"s + E@©6,)

° Minimize M (a A,) over a

® Momentum extension: find minimum foré=a A, +u o,

° Analytical solution

o\ (ATFB,)A, ALF(0,)8, 1\ ( VE(@,)T A,
9! - AZF(Hn)(Sn—l 55_1F(9n)5n—1 VE(Hn)T 5n—1
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® Direction/scale split = use different trust regions for each

°© When A, is a good direction: take a large ® Directional trust region
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® How to quantify it 7 ; . .
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° m; automatically chosen to minimize cross-term
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Mitigating the crudeness of KFAC

General strategy Regularization

| y » ® Trust regions are all the more important !
® KFAC update: 0, = a X A, with A, = — (Fgpsc(6,))” VE(O,)

® Direction/scale split = use different trust regions for each

°© When A, is a good direction: take a large ® Directional trust region

° When A, is a bad direction: take a small o Tikhonov regularization: F.R% ~4x ([E [a,_1a” ] +1x, Id) ® ([E lee]] + Id)
2]

® How to quantify it 7 ; . .
1 Y °© Regularizes calculation of inverses as well

° m; automatically chosen to minimize cross-term

Update evaluation

o vy adapted with greedy algorithm: take best of (L, Y, }/)

® Define a local quadratic model: use the exact Fisher F(6) )

® Scaling trust region

1
o M (5) = EéTF 0,5+ VE®,) 6+ E®,)
° Spherical regularization: F'* = F+ 1 Id

° Minimize M,(a A,) over a ° A adapted with a Levenberg-Marquardt algorithm [moré (1978)]
® Momentum extension: find minimum for 6 =a A, +u o,_; o Mzzsre auality of local medel with o = E©, +0,) — E(0,)
. . - M (5,)— M (0)
° Analytical solution f p <025 ' i n\%n n

_ @1
o\ [ ATFO,)A, ALF0,)6,-1\ [ VE(6,)T A, i |
<u> - (AZF%)&M 65_1F<9n>5n1> VE(0,)7 8,1 If p>0.75: A< o 4

" 1f025<p<0.75 1< 2



Mitigating the crudeness of KFAC

General strategy Regularization

| y » ® Trust regions are all the more important !
® KFAC update: 0, = a X A, with A, = — (Fgpsc(6,))” VE(O,)

® Direction/scale split = use different trust regions for each

°© When A, is a good direction: take a large ® Directional trust region

° When A, is a bad direction: take a small o Tikhonov regularization: F.R% ~4x ([E [a,_1a” ] +1x, Id) ® ([E lee]] + Id)
2]

® How to quantify it 7 ; . .
1 Y °© Regularizes calculation of inverses as well

° m; automatically chosen to minimize cross-term

Update evaluation

o vy adapted with greedy algorithm: take best of <L, Y, }/)

® Define a local quadratic model: use the exact Fisher F(6) )

® Scaling trust region

1
o M (5) = EéTF 0,5+ VE®,) 6+ E®,)
° Spherical regularization: F'* = F+ 1 Id

° Minimize M,(a A,) over a ° A adapted with a Levenberg-Marquardt algorithm [moré (1978)]
® Momentum extension: find minimum for 6 =a A, +u o,_; o Mzzsre auality of local medel with o = E©, +0,) — E(0,)
. . - M (5,)— M (0)
° Analytical solution f p <025 ' i n\%n n

_ @1
o\ [ ATFO,)A, ALF0,)6,-1\ [ VE(6,)T A, i |
<u> - (AZF(WM 65_1F<9n>5n1> VE(0,)7 8,1 If p>0.75: A< o 4
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Two hyperparameters
W, », € 10, 1]
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Breaking of Kronecker factorization

Input layer : Hidden layers : Output layer
7 h, 0

; Aﬁ"A\ A

VV ‘V V’
Q~ Q~

w;;;! V;;;

NN L

Kronecker-Factorization in slow-motion 32

® Assume your regular feed-forward neural network

Input 1

> Fisher matrix: Fy(0) =4 X Ex_jy2 95, 1n1%,(0) | 9, In| %4001

oIn|¥,(0)| _ b o0l _ -y
owy oWy oy

Output 1

\‘
VV'}

Input 2

o Chain rule:

‘\ E o For any vectors € R - vec (eaT) =a®e
Output n

® Back to Fisher
o Fi(0) =4E vec (ea”) vec (ea”) T] =4E [(a @ e)(a” ® e")| = 4E [(aa”) @ (ee™))




Breaking of Kronecker factorization

Input layer : Hidden layers : Output layer
1 h, 0

5 “A’AA\ A

\0 Y NY

" )‘.'. ‘Q‘ ‘Q~ ( . o Chain rule: 7 an dhl ;

: ‘V' 7V vv ‘ : ’

. "‘" "“ \ ) o For any vectors € R : vec (ea ) a®e ‘FKFAC ~ 4 xE [aClT] ® [E [eeT] ‘

Input o @ / S /\ /‘\ Output n

Kronecker-Factorization in slow-motion 32

® Assume your regular feed-forward neural network

Input 1

o Fisher matrix: Fy(0) = 4x Ey_yy,2 [0 In[%,00) | 95 In %4001

oln|Wo(X)| _ O dln|¥yX)| _

Output 1

Input 2 a=lol

® Back to Fisher KFAC

o Fi(0) =4E -vec (eaT) vec (eaT) T] =4 [(a Re)a! ® BT)] =4[ [(dClT) & (eeT)]




Breaking of Kronecker factorization

Input layer : Hidden layers : Output layer

i . h, h, h, 0

~ Output 1

~ Output n

Slater Matrix

_) . W_J
W—J Signed-Log

1 Generalised Determinant

Kronecker-Factorization in slow-motion

® Assume your regular feed-forward neural network

> Fisher matrix: Fy(0) =4 X Ex_jy2 95, 1n1%,(0) | 9, In| %4001
oIn| %001 _ O ol ¥yX)| _ iy
WL on -

‘FKFAC ~ 4 X[E [aaT] Q [eeT]

o Chain rule:
oW!

o  For any vectors € R : vec (eaT) =a®e

® Back to Fisher KFAC

o Fy(0) = 4E |vec (ea”) vec (ea”)'| = 4E [(a ® e)(a” ® eT)] = 4E [(aa”) ® (ce")]

KFAC for fermionic neural networks?

® FermiNet-like uses weight-sharing

°© The same weights are used for each rows
Oln|PyX)| & 9y ln| Py(X)| _ oy
oWy wa,

o Chain rule:

o But now a and e are H X A matrices: vec (eaT) = (a @ e).vec(ly)

® Back to Fisher
o Fy(0) = 4E [(a ®e) (vec(ly) vec(I)T) (a ® eT)]




Breaking of Kronecker factorization

Input layer : Hidden layers : Output layer

i . h, h, h, 0

~ Output 1

~ Output n

Slater Matrix

_) . W_J
W—J Signed-Log

1 Generalised Determinant

Kronecker-Factorization in slow-motion

® Assume your regular feed-forward neural network
o Fisher matrix: Fy(0) = 4 X Ey_yy p [agilnw@(xn 0 1n|\P9(X)|]
1
Oln|Wy(X)| _ O oln|¥X)| _ ., ,
oW, oh! b

‘FKFAC ~ 4 X[E [aaT] Q [eeT]

o Chain rule:
oW!

o  For any vectors € R : vec (eaT) =a®e

® Back to Fisher KFAC

o Fy(0) = 4E |vec (ea”) vec (ea”)'| = 4E [(a ® e)(a” ® eT)] = 4E [(aa”) ® (ce")]

KFAC for fermionic neural networks?

® FermiNet-like uses weight-sharing

°© The same weights are used for each rows
Oln|PyX)| & 9y ln| Py(X)| _ oy
oWy wa,

o Chain rule:
o But now a and e are H X A matrices: vec (eaT) = (a @ e).vec(ly)

*} KFAC

® Back to Fisher
o Fy(0) = 4E [(a ®e) (vec(ly) vec(I)T) (a ® eT)]




A primer on MINRES

The linear problem

® Definition

o Solve: Ax = b, where AT = A and where Ax can be calculated efficiently

® Reformulations

o Change of variable: x = P , where PP, =1
o Variational: minimize f(u) = (AP,u — b)' (AP,u — b)

® Stationary solution: df =0

© PkTAsz U = PkTA b — solution u;, = minimum residual

= What P, to choose ?
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A primer on MINRES

The linear problem

® Definition

o Solve: Ax = b, where AT = A and where Ax can be calculated efficiently

® Reformulations

o Change of variable: x = P , where PP, =1
° Variational: minimize f(u) = (AP,u — b)T(APku — b)

® Stationary solution: df =0

© PkTAsz U = PkTA b — solution u;, = minimum residual

= What P, to choose ?

Lanczos tridiagonalization algorithm [Lanczos (1950)]
® |nitialization: v = b/f, and B, = || b]|

(051 P
® Recursion: a;, f; and v; b a,

Py o

O —_— —_ —_
Pi1Vig1 = Av, — iVi—1

T

® Output at step k: T}, and P, = [v{|...|v] s.t.

—>

_ T
° AP, = PT, + Py Vin14

° P/P,=1 and P/v,;=0




A primer on MINRES

The linear problem MINRES solver

[Paige, Saunders (1975)]

® Definition ® Two-step algorithm
o Solve: Ax = b, where AT = A and where Ax can be calculated efficiently o | anczos: (Tlg +ﬂ]g+1ekekT) u=pT.e,

® Reformulations o LQ factorization: T, = L0,
°© Change of variable: x = P.u , where PkTPk =1 ® Nice properties
° Variational: minimize f(u) = (AP — b)' (AP — b) o Cumulative — keep only last few steps in memory

® Stationary solution: df =0 ° Only requires Ax — practical for large sparse matrices
o PkTAsz 1y = kaA b — solution u, = minimum residual ° |terative — can improve initial guess just a little bit

= \What P. to choose ? © Guaranteed to decrease norm of the residue
k .

Lanczos tridiagonalization algorithm [Lanczos (1950)]
® |nitialization: v = b/f, and B, = || b]|

(051 P
® Recursion: a;, f; and v; b a,

Py o

O — — —
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A primer on MINRES

The linear problem MINRES solver 33

[Paige, Saunders (1975)]

® Definition ® Two-step algorithm

o Solve: Ax = b, where AT = A and where Ax can be calculated efficiently o |.anczos: (Tlg +ﬂ]g 1ekekT) u=pT.e
: +

°© Cumulative — keep only last few steps in memory

® Reformulations

o LQ factorization: T, = L, O,
o Change of variable: x = P , where PP, =1

° Variational: minimize f(u) = (AP,u — b)T(APku — b)

® Nice properties

® Stationary solution: df =0 °© Only requires Ax — practical for large sparse matrices

o PkTAsz 1y = kaA b — solution u, = minimum residual ° |terative — can improve initial guess just a little bit

= \What P. to choose ? © Guaranteed to decrease norm of the residue
k .

Original numerical test

Lanczos tridiagonalization algorithm [Lancos (1950)] 2 |
[Paige, Saunders (1975)]

® |nitialization: v = b/f, and B, = || b]|

(051 P> O

® Recursion: a;, f; and v;

O — — —
Pi1Vig1 = Av, — iVi—1

T

® Output at step k: T}, and P, = [v{|...|v] s.t.

_ T
° AP, = PT, + Py Vin14

° P/P,=1 and P/v,;=0

—>

P, o

s

3

k| syMmLQ)

......... 10615 .~<k3|| (CGM)
e 10G, | (MINRES)

k= iteration no.
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5 10 15 20 25 30

Can be used to gradually
refine KFAC approximation!



Implementing decisional gradient descent

Reminder

® Local problem of decisional gradient descent

o M (8) = VE@©,)'6+ E®6,)

o T,(r)={6: 6"Gyp6,)8 <r*}

= 5, x G0, VE®,

34



Implementing decisional gradient descent

Reminder

® Local problem of decisional gradient descent

o M (8) = VE@©,)'6+ E®6,)

o T,(r)={6: 6"Gyp6,)8 <r*}

= 5, x G0, VE®,

Evaluation of the update direction

® Approximation on the metric:

o Block diagonal between layers Gyp(6,) = Gya(6,)

® MINRES solver:
o Linear system: Gy,;-(6,).x = VE(6,)
o Starting point: { 6,_; with £ =0.95

o 9
o Preconditioner: <diag(GVMC(9n)) + KI>

« x=10"2and £=0.75

® |nspired by Hessian-Free type of optimizer

[For a nice review: Martens, Sutskever (2012)]
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= 5, x G0, VE®,

Evaluation of the update direction

® Approximation on the metric:

o Block diagonal between layers Gyp(6,) = Gya(6,)

® MINRES solver:
o Linear system: Gy,;-(6,).x = VE(6,)

o Starting point: { 6,_; with £ =0.95
o ¢
o Preconditioner: <diag(GVMC(9n)) + KI>

« x=10"2and £=0.75

® |nspired by Hessian-Free type of optimizer

[For a nice review: Martens, Sutskever (2012)]

Evaluation of the scaling

® Scaling factors: use the exact metric Gyy,(0,)

1
o M) = 8" Gyy(6,)8 + VE®G,)"5 + E@,

o Minimize M(a A +u 8, ;) over a and pu

= Minimum obtained defines our 0,
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Implementing decisional gradient descent

Reminder

® Local problem of decisional gradient descent

o M (8) = VE@©,)'6+ E®6,)

o T,(r)={6: 6"Gyp6,)8 <r*}

= 5, x G0, VE®,

Evaluation of the update direction

® Approximation on the metric:

o Block diagonal between layers Gyp(6,) = Gya(6,)

® MINRES solver:
o Linear system: Gy,;-(6,).x = VE(6,)
o Starting point: { 6,_; with £ =0.95

o 9
o Preconditioner: <diag(GVMC(«9n)) + KI)

« x=10"2and £=0.75

® |nspired by Hessian-Free type of optimizer

[For a nice review: Martens, Sutskever (2012)]

Evaluation of the scaling

® Scaling factors: use the exact metric Gyy,(0,)

1
o MI(S) = EéTGVMC(Hn)é + VE@B)' 6+ E@©)

o Minimize M(a A +u 8, ;) over a and pu

= Minimum obtained defines our 0,

Regularizations

® Only one regulator for now: A

°© Used both in MINRES and Re-scaling steps

o No KFAC approximation — 2 regulators less justified
o Levenberg-Marquardt rule: dynamical A

® Hessian-Free type of optimizer [Martens, Sutskever (2012)]

o Suggests smarter regulators — more stable

o Left for future improvements
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o 9
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Evaluation of the scaling 34

® Scaling factors: use the exact metric Gyy,(6,) Decisional Gradient Descent (DGD)

E(6), VE(O)

1
o M) = 8" Gyy(6,)8 + VE®G,)"5 + E@,

o Minimize M(a A +u 8, ;) over a and pu

= Minimum obtained defines our 0, -
GVMC (6)

MINRES l A reg

Regularizations El

® Only one regulator for now: A

°© Used both in MINRES and Re-scaling steps
o No KFAC approximation — 2 regulators less justified
o Levenberg-Marquardt rule: dynamical A

® Hessian-Free type of optimizer [Martens, Sutskever (2012)]

Rescaling

o Suggests smarter regulators — more stable

o Left for future improvements



