Reach and opportunities for Green's function methods in nuclear physics
 Carlo Barbieri

Outline:

- Optical potentials
- Infinite matter
- Diagrammatic Monte Carlo

The Faddev-RPA and ADC(3) methods in a few words

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy.
Both ladders and rings are needed for atomi nuclei:
F-RPA:
Phys. Rev. C63, 034313 (2001) Phys. Rev. A76, 052503 (2007)
Phys. Rev. A83, 042517 (2011)
ADC(3):
Lect. Notes in Phys 936 (2017)Chapter 11.

All Ladders (GT) and ring modes (GW) are coupled to all orders. Two approaches:

- Faddev-RPA allows for RPA modes
- ADC(3) Tamn-Dancoff version using 3rd order diagrams as 'seeds':

The Self-Consistent Green's Function with Faddev-RPA

Binding energies
oxygen drip line
[Phys Rev. Lett. 111, 062501 (2013)] $\quad \begin{aligned} & \text { Charge \& Matter distribution } \\ & \text { Neutron skins [Phys Rev. Lett. 125, } 182501 \text { (2020)] }\end{aligned}$

	SCGF	Exp.
${ }^{100} \mathrm{Sn}$	$4.525-4.707$	
${ }^{132} \mathrm{Sn}$	$4.725-4.956$	4.7093
${ }^{132} \mathrm{Xe}$	$4.700-4.948$	4.7859
${ }^{136} \mathrm{Xe}$	$4.715-4.928$	4.7964
${ }^{138} \mathrm{Xe}$	$4.724-4.941$	4.8279

Spectroscopy
Ionisation energies and affinities for simple atoms and molecules
[Phys Rev. A. 83, 042517 (2011); 85, 012501 (2012)]

	Level	ADC(3)	FRPA	FRPA(c)	Expt.
нF					
	${ }_{3}^{1 / \pi}$	${ }^{16,48}$	${ }_{20.03}^{16.05}$	${ }_{20}^{16.35}$	16.05 20.0
co					
	5	13.94 1.908	14.37 1.95	13.69 1.64	${ }_{14.01}^{14.91}$
	${ }_{4 \sigma}^{1 \pi}$	16.98 20.19	16.95 19.46	10.84 19.59	19.912 19.72
$\mathrm{H}_{2} \mathrm{O}$	${ }_{1} b_{1}$	12.86	12.62	12.67	2.62
	$3 a_{1}$	15.15	14.91	14.98	14.74
	${ }_{1}^{1 b_{2}}$	19.21	19.06		18.51
	Δ (ev)	${ }^{0.350 .0 .30)}$	${ }^{0.25(0.23)}$	${ }^{0.3110 .26)}$	

Nuclear ELM response and dipole polarisability, a_{D}

Gorkov ansatz... for atomic nuclei

> In the presence of degenracies (vanishing ph- gaps), enforce (two nucleon) pairing to mitigate unstabilities:
$>$ Ansatz many-body state: $\left|\Psi_{0}\right\rangle=\sum_{n=0}^{\infty} c_{2 n}\left|\psi^{2 n}\right\rangle$
\longrightarrow Introduce a "grand-canonical" potential $\Omega \equiv H-\mu N$
$\longrightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\min _{\left|\Psi_{0}\right\rangle}\left\{\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle\right\}$ under the constraint $\mathrm{N}=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle$
> Generates a set of two normal and two anomalous propagators:

$\mathbf{G}_{\alpha \beta}\left(t, t^{\prime}\right) \equiv\left(\begin{array}{l}G_{\alpha \beta}^{11}\left(t, t^{\prime}\right) \equiv-i\left\langle\Psi_{0}\right| T\left[c_{\alpha}(t) c_{\beta}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \equiv \\ G_{\alpha \beta}^{21}\left(t, t^{\prime}\right) \equiv-i\left\langle\Psi_{0}\right| T\left[c_{\alpha}^{\dagger}(t) c_{\beta}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \equiv\end{array}\right.$

$$
\begin{gathered}
G_{\alpha \beta}^{12}\left(t, t^{\prime}\right) \equiv-i\left\langle\Psi_{0}\right| T\left[c_{\alpha}(t) c_{\beta}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \equiv \\
G_{\alpha \beta}^{22}\left(t, t^{\prime}\right) \equiv-i\left\langle\Psi_{0}\right| T\left[c_{\alpha}^{\dagger}(t) c_{\beta}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \equiv
\end{gathered}
$$

Nambu-Covariant approach to build (Gorkov) propagators

Gorkov at 2nd order:

pp-ladders:
ph-rings:

Gorkov at
3rd order:
(ONLY NN forces)

(NN ONLY forces) li studi di milano

DIPARTIMENTO DI FISICA

Nambu-Covariant approach to build (Gorkov) propagators

PHYSICAL REVIEW C 105, 044330 (2022)

Gorkov algebraic diagrammatic construction formalism at third order

Gorkov at 2nd order:

Carlo Barbieri
Department of Physics, Via Celoria 16, 20133, Milano, Italy and INFN, Via Celoria 16, 20133, Milano, Italy

Thomas Duguet

IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France and KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

Vittorio Somà
IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

$$
\begin{aligned}
& \widetilde{\Sigma}_{\alpha \beta}^{11}(\omega)=\sum_{r r^{\prime}}\left\{\mathcal{C}_{\alpha, r}\left[\frac{1}{\omega \mathbb{I}-\mathcal{E}+i \eta}\right]_{r, r^{\prime}} \mathcal{C}_{r^{\prime}, \beta}^{\dagger}+\overline{\mathcal{D}}_{\alpha, r}^{\dagger}\left[\frac{1}{\omega \mathbb{I}+\mathcal{E}^{T}-i \eta}\right]_{r, r^{\prime}} \overline{\mathcal{D}}_{r^{\prime}, \beta}\right\} \\
& \widetilde{\Sigma}_{\alpha \beta}^{12}(\omega)=\sum_{r r^{\prime}}\left\{\mathcal{C}_{\alpha, r}\left[\frac{1}{\omega \mathbb{I}-\mathcal{E}+i \eta}\right]_{r, r^{\prime}} \mathcal{D}_{r^{\prime}, \beta}^{*}+\overline{\mathcal{D}}_{\alpha, r}^{\dagger}\left[\frac{1}{\omega \mathbb{I}+\mathcal{E}^{T}-i \eta}\right]_{r, r^{\prime}} \overline{\mathcal{C}}_{r^{\prime}, \beta}^{T}\right\}
\end{aligned}
$$

hh-interactions (hh int. among pp ladders

Gorkov at
3rd order: (ONLY NN forces)

(NN ONLY forces) li studi di milano

$\mathcal{C}_{\alpha, r}^{(\mathrm{ILb})}=\frac{1}{\sqrt{6}} \mathcal{P}_{123} \sum_{\alpha_{\mu \lambda, \mu \nu}}\left(\overline{\mathcal{V}}_{\nu}^{k_{4}} \mathcal{U}_{\lambda}^{k_{5}}\right)^{*} t_{k_{4} k_{5}}^{k_{1} k_{2}} \mathcal{U}_{\mu}^{k_{3}}, \quad$ (43b)
$\mathcal{C}_{\alpha, r}^{(\text {IIc })}=\frac{1}{\sqrt{6}} \mathcal{P}_{123} \sum_{\mu \nu \lambda}^{k_{4} k_{5}} \frac{v_{\alpha \lambda, \mu \nu}}{2}\left(\overline{\mathcal{V}}_{\mu}^{k_{4}} \overline{\mathcal{V}}_{\nu}^{k_{5}}\right)^{*} t_{k_{1} k_{2}}^{k_{k} k_{5}} \overline{\mathcal{V}}_{\lambda}^{k_{3}}, \quad$ (47a)
$\mathcal{C}_{\alpha, r}^{(\text {IId })}=\frac{1}{\sqrt{6}} \mathcal{P}_{123} \sum_{\substack{\mu \nu \lambda \\ k_{4} k_{5}}}^{\substack{k_{4} k_{5}}} v_{\alpha \lambda, \mu \nu}\left(\overline{\mathcal{V}}_{\nu}^{k_{4}} \mathcal{U}_{\lambda}^{k_{5}}\right)^{*} t_{k_{1} k_{2}}^{k_{k} k_{5}} \mathcal{U}_{\mu}^{k_{3}}, \quad$ (47b)
$\mathcal{E}_{k_{1} k_{2}, k_{4} k_{5}}^{(p p)}=\sum_{\alpha \beta \gamma \delta}\left(\mathcal{U}_{\alpha}^{k_{1}} \mathcal{U}_{\beta}^{k_{2}}\right)^{*} v_{\alpha \beta, \gamma \delta} \mathcal{U}_{\gamma}^{k_{4}} \mathcal{U}_{\delta}^{k_{5}}$,
$\mathcal{E}_{k_{1} k_{2}, k_{4} k_{5}}^{(h h)}=\sum_{\alpha \beta \gamma \delta} \overline{\mathcal{V}}_{\alpha}^{k_{1}} \overline{\mathcal{V}}_{\beta}^{k_{2}} v_{\alpha \beta, \gamma \delta}\left(\overline{\mathcal{V}}_{\gamma}^{k_{4}} \overline{\mathcal{V}}_{\delta}^{k_{5}}\right)^{*}$
(46)
$\mathcal{C}_{\alpha, r}^{(\mathrm{ILe})}=\frac{1}{\sqrt{6}} \mathcal{A}_{123} \sum_{\substack{\mu \nu \lambda \\ k, k_{s}}} v_{\alpha \lambda, \mu v}\left(\overline{\bar{v}}_{v}^{k_{i}^{k}} \mathcal{U}_{\lambda}^{k_{8}}\right)^{*} \mathcal{U}_{\mu}^{k_{1} t_{k} t_{k \neq k_{3}}^{k_{k} k_{2}}, \quad \text { (50a) }}$ $\mathcal{C}_{\alpha, r}^{(\text {IIf })}=\frac{1}{\sqrt{6}} \mathcal{A}_{123} \sum_{\mu \nu \lambda} v_{\alpha \lambda, \mu \nu}\left(\mathcal{U}_{\lambda}^{k_{i}} \overline{\mathcal{V}}_{\mu}^{k_{s}}\right)^{*} \mathcal{U}_{\nu}^{\left.k_{1} t_{k} t_{k l k_{k}}^{k_{k}}, \quad \text {, } 50 \mathrm{~b}\right)}$
 $\mathcal{E}_{r, r^{\prime}}^{(\mathrm{Ic})}=\frac{1}{6} \mathcal{A}_{123} \mathcal{A}_{456}\left(\delta_{k_{1}, k_{4}} \mathcal{E}_{k_{2} k_{3}, k_{5} k_{6}}^{(p h)}\right)$,

${ }^{46} \mathrm{Ar}(3 \mathrm{He}, \mathrm{d})^{47 \mathrm{~K}}$ at GANIL

d3/2-s1/2 inversion revisited from adding protons to ${ }^{46} \mathrm{Ar}$

O Unoccupied orbital state

${ }^{46} \mathrm{Ar}(3 \mathrm{He}, \mathrm{d})^{47 \mathrm{~K}}$ at GANIL: New charge bobble in ${ }^{46} \mathrm{Ar}$

d3/2 - s1/2 inversion revisited from adding protons to ${ }^{46} \mathrm{Ar}$

$$
\frac{d \sigma}{d \Omega}=\sum_{k} g_{k} \mathcal{C}^{2} \mathcal{S}_{k} \frac{d \sigma_{k}^{S P}}{d \Omega}
$$

Ab initio optical potentials from propagator theory

Relation to Fesbach theory:
Mahaux \& Sartor, Adv. Nucl. Phys. 20 (1991)
Escher \& Jennings Phys. Rev. C66, 034313 (2002)
Previous SCGF work:
CB, B. Jennings, Phys. Rev. C72, 014613 (2005)
S. Waldecker, CB, W. Dickhoff, Phys. Rev. C84, 034616 (2011)
A. Idini, CB, P. Navrátil, Phys. Rv. Lett. 123, 092501 (2019)

M . Vorabbi, CB, et al., in preparation

Optical potentials for the rare-isotope beam era

Microscopic optical potential

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Nuclear self-energy $\Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)$:

- contains both particle and hole props.
- it is proven to be a Feshbach opt. pot \rightarrow in general it is non-local!

Solve scattering and overlap functions directly in momentum space:

$$
\begin{aligned}
& \Sigma^{\star l, j}\left(k, k^{\prime} ; E\right)=\sum_{n, n^{\prime}} R_{n l}(k) \Sigma_{n, n^{\prime}}^{\star l, j} R_{n l}\left(k^{\prime}\right) \\
& \frac{k^{2}}{2 \mu} \psi_{l, j}(k)+\int \mathrm{d} k^{\prime} k^{\prime 2} \Sigma^{\star l, j}\left(k, k^{\prime} ; E_{c . m .}\right) \psi_{l, j}\left(k^{\prime}\right)=E_{c . m .} \psi_{l, j}(k)
\end{aligned}
$$

Low energy scattering - from SCGF

Benchmark with NCSM-based scattering.
[A. Idini, CB, Navratil,
Phys. Rev. Lett. 123, 092501 (2019)]

Scattering from mean-field only:

Low energy scattering - from SCGF

[A. Idini, CB, Navratil,

Benchmark with NCSM-based scattering.

Phys. Rev. Lett. 123, 092501 (2019)]

Scattering from mean-field only:

Full self-energy from SCGF:

Role of intermediate state configurations (ISCs)

[A. Idini, CB, Navrátil,
Phys. Rev. Lett. 123, 092501 (2019)]

50% of $2 p 1 h / 2 h 1 p$ poles suppressed
2.

Full $\Sigma_{\alpha \beta}^{\star}(\omega)$ (all ISCs included)
0
0

$$
\begin{aligned}
& \begin{array}{ccc}
5 & 10 & 15 \\
& & E(\mathrm{MeV})
\end{array} \\
& \Sigma_{\alpha \beta}^{\star}(\omega)=\Sigma_{\alpha \beta}^{(\infty)}+\sum_{i, j} \mathbf{M}_{\alpha, i}^{\dagger}\left(\frac{1}{E-\left(\mathbf{K}^{>}+\mathbf{C}\right)+i \Gamma}\right)_{i, j} \mathbf{M}_{j, \beta}+\sum_{r, s} \mathbf{N}_{\alpha, r}\left(\frac{1}{E-\left(\mathbf{K}^{<}+\mathbf{D}\right)-i \Gamma}\right)_{r, s} \mathbf{N}_{s, \beta}^{\dagger}
\end{aligned}
$$

Microscopic optical potential

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Nuclear self-energy $\Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)$:

- contains both particle and hole props.
- it is proven to be a Feshbach opt. pot \rightarrow in general it is non-local !

Elastic nucleon nucleus scattering

(Ab Initio) Optical potentils workshop at the ECT*

TOWARDS A CONSISTENT
 APPROACH FOR NUCLEAR
 STRUCTURE AND REACTIONS: MICROSCOPIC OPTICAL POTENTIALS

17 June 2024 - 21 June 2024

June 17-24, 2024

Organizers
Carlo Barbieri (Università degli Studi di Milano) carlo.barbieri@unimi.it
Charlotte Elster (Ohio University)
elster@ohio.edu
Chloë Hebborn (Facility of Rare Isotopes Beams (FRIB))
hebborn@frib.msu.edu
Alexandre Obertelli (TU Darmstadt)
aobertell@ikp.tu-darmstadt.de

Direct nuclear reactions, processes such as nucleon transfer, knockout, anti-nucleon capture have been extensively exploited by experiments to learn about the structure of exotic isotopes far away from stability, to infer properties of the nuclear forces, to describe nucleosynthesis and to learn about the nuclear equation of state. In this respect, nucleon-nucleus optical potentials are of great importance since they are the fundamental building blocks needed to predict reaction observables to address such a wide range of Nuclear Physics facets. Traditional phenomenological optical potential parameterizations are fully reliable only in specific regions of the nuclear chart, near the stable isotopes they were fitted to. On the contrary, microscopically derived potentials can be systematically extended to isotopes far from stability that are the focus of modern experimental searches. This workshop will address the state-of-the-art of nuclear optical potentials to foster advances in their accuracy and handling of uncertainty propagation.
(Toward)

Diagrammatic Monte Carlo (DiagMC) in finite systems

See also poster form S. Brolli (MSc Thesis)

Green's function theory beyond ADC(3)?

The Green's function is found as the exact solution of the Dyson equation:

$$
G_{\alpha \beta}(\omega)=G_{\alpha \beta}^{(0)}(\omega)+\sum_{\gamma \delta} G_{\alpha \gamma}^{(0)}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) G_{\delta \beta}(\omega)
$$

It requires knowing the self-energy which is the sum of an infinite series of Feynman diagrams:

The number of required diagrams explodes (factorially!) with the order of the approximation...

Diagrams grow factorially (more than exponentially) with the order
A direct calculation of all diagrams beyond order three is unfeasible.

Diagrammatic Monte Carlo (DiagMC) samples diagrams in their topological space using a Markov chain.

Diagrammatic Monte Carlo: overview

$$
\Sigma_{\alpha \beta}^{\star}(\omega)=\sum_{\mathcal{T}} \sum_{\gamma_{1} \ldots \gamma_{n}} \int d \omega_{1} \ldots d \omega_{m} \mathcal{D}_{\alpha \beta}^{\omega}\left(\mathcal{T} ; \gamma_{1} \ldots \gamma_{n} ; \omega_{1} \ldots \omega_{m}\right) 1_{\mathcal{T} \in \mathcal{S}_{\Sigma^{\star}}}
$$

We define $\mathcal{C}:=\left(\mathcal{T} ; \gamma_{1} \ldots \gamma_{n} ; \omega_{1} \ldots \omega_{m}\right)$

$$
\begin{aligned}
& \Sigma_{\alpha \beta}^{\star}(\omega)=\int d \mathcal{C}\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| e^{i \arg \left[\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right]_{\mathcal{T} \in \mathcal{S}_{\Sigma^{\star}}}} \\
& \Sigma_{\alpha \beta}^{\star}(\omega)=\mathcal{Z}_{\alpha \beta}^{\omega} \int d \mathcal{C} \frac{\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| W_{o}(N)}{\mathcal{Z}_{\alpha \beta}^{\omega}} \frac{e^{i \arg \left[D_{\alpha \beta}^{\omega}(\mathcal{C})\right]}}{W_{o}(N)} 1_{\mathcal{T} \in \mathcal{S}_{\Sigma^{\star}}}
\end{aligned}
$$

- $W_{o}(N)$ is an order dependent reweighting factor

Q $\mathcal{Z}_{\alpha \beta}^{\omega}=\int d \mathcal{C}\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| W_{o}(N)$ is a normalization factor
Q $w_{\alpha \beta}^{\omega}(\mathcal{C}):=\frac{\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| W_{o}(N)}{\mathcal{Z}_{\alpha \beta}^{\omega}}$ is a probability distribution function

The updates

(1) Change Frequency
 (2) Change Single-Particle Quantum Numbers

Change Frequency:

Change Single-Particle Quantum Numbers:

The updates

(3) Add Loop
(3) Remove Loop

Monte Carlo on the topology
(5) Reconnect

ω_{1}^{\prime} is drawn from the probability distribution $W_{f}\left(\omega_{1}^{\prime}\right)$

$$
q_{A L}=\frac{|g|}{4 \pi} \frac{1}{W_{f}\left(\omega_{1}^{\prime}\right)} e^{-k \omega_{1}^{\prime 2}}\left|G_{\alpha}(\omega)\right| \frac{W_{o}(3)}{W_{o}(2)}
$$

Reconnect:

The unphysical propagators are turned into physical ones when reconnected.

Results of the simulation for $D=4$

Richardson pairing model with D states, half filled:

$$
H=\xi \sum_{\alpha=0}^{D-1} \sum_{\sigma=+,-} \alpha c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-\frac{g}{2} \sum_{\alpha, \beta=0}^{D-1} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

$$
\begin{aligned}
& \Sigma_{\alpha \beta}^{\star}(\omega)=\Sigma_{\alpha \beta}^{(\infty)}+\sum_{i, j} \mathbf{M}_{\alpha, i}^{\dagger}\left(\frac{1}{E-\left(\mathbf{K}^{>}+\mathbf{C}\right)+i \Gamma}\right)_{i, j} \mathbf{M}_{j, \beta} \\
& \quad+\sum_{r, s} \mathbf{N}_{\alpha, r}\left(\frac{1}{E-\left(\mathbf{K}^{<}+\mathbf{D}\right)-i \Gamma}\right)_{r, s} \mathbf{N}_{s, \beta}^{\dagger}
\end{aligned}
$$

Figure 4.1: Components $\alpha=0$ and $\alpha=2$ of the imaginary part of the self-energy for different values of the coupling g. The blue line is the results obtained with the BDMC simulation, while
the red line is the best fit as a sum of the red line is the best fit as a sum of two Lorentzians. The results for the two values of $\alpha=0,2$ are displayed respectively on the left and on the right of the graph. The error bars are calculated as explained in the main text.

Results of the simulation for $D=4$

Imaginary part of the component $\alpha=0$ of the diagonal self-energy for different values of the coupling:

We fitted the imaginary part of the self-energy as a sum of Lorentzians.
S. Brolli, CB, Vigezzi,
in preparation

Reorganization in terms of ladders (I)

Imaginary part of the component $\alpha=0$ of the diagonal self-energy ($\mathrm{g}=-0.6$):

Old updating scheme:

New updating scheme:

It restores the correct spectral representation also for $\mathrm{g}<-0.4$!

Reorganization in terms of ladders (I)

Correlation energy $\Delta E=E-E_{H F}$ as a function of interaction strength (g) :

S. Brolli, CB, Vigezzi,

DIPARTIMENTO DI FISICA
in preparation
Spectroscopic function for different dimensions of the model space (D):

SCGF computations of infinite matter

F. Marino (PhD Thesis)

Nuclear Density Functional from Ab Initio Theory

PHYSICAL REVIEW C 104, 024315 (2021)

Nuclear energy density functionals grounded in ab initio calculations

F. Marino $\odot,{ }^{1,2,{ }^{*}}$ C. Barbieri®, ${ }^{1,2}$ A. Carbone, ${ }^{3}$ G. Colò $\odot,{ }^{1,2}$ A. Lovato $\odot,^{4,5}$ F. Pederiva, ${ }^{6,5}$ X. Roca-Maza $\odot,{ }^{1,2}$ and E. Vigezzi ${ }^{2}{ }^{2}$
${ }^{1}$ Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, 20133 Milano, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy

DFT is in principle exact - but the energy density functional (EDF) is not known

For nuclear physics this is even more demanding: need to link the EDF to theories rooted in QCD!

Jacob's ladder

Machine-learn DFT functional on the nuclear equation of state

Benchmark in finite systems

$$
\begin{aligned}
& E=\int d \mathbf{r} \mathcal{E}(\mathbf{r})=E_{\mathrm{kin}}+E_{\mathrm{pot}}+E_{\mathrm{Coul}} \\
& E_{\mathrm{GA}}=E_{\mathrm{LDA}}+E_{\mathrm{surf}} \\
& E_{\text {surf }}=\int d \mathbf{r}\left[\sum_{t=0,1} C_{t}^{\Delta} \rho_{t} \Delta \rho_{t}\right. \\
& \left.\quad-\frac{W_{0}}{2}\left(\rho \nabla \cdot \mathbf{J}+\sum_{q} \rho_{q} \nabla \cdot \mathbf{J}_{q}\right)\right]
\end{aligned}
$$

Benchmark on finite systems

Jacob's ladder
Machine-learn DFT functional on the nuclear equation of state

Benchmark in finite systems

Gradient terms are important (but they seem to work!):

Need to extract gradient information from non-uniform matter

External (monocromatic) perturbation:

$$
\begin{aligned}
& v(\mathbf{x})=v_{q} e^{i \mathbf{q} \cdot \mathbf{x}}+c . c .=2 v_{q} \cos (\mathbf{q} \cdot \mathbf{x}) \\
& \delta \rho(\mathbf{x})=2 \rho_{q} \cos (\mathbf{q} \cdot \mathbf{x})
\end{aligned}
$$

ADC(3) computations for infinite matter

Finite size box (of length L) with periodic boundary conditions:

$$
\begin{aligned}
& \rho=\frac{A}{L^{3}} \quad p_{F}=\sqrt[3]{\frac{6 \pi^{2} \rho}{v_{d}}} \\
& \phi(x+L, y, z)=\phi(x, y, z)
\end{aligned}
$$

$$
\widehat{H}=\sum_{\alpha} \varepsilon_{\alpha}^{0} a_{\alpha}^{\dagger} a_{\alpha}-\sum_{\alpha \beta} U_{\alpha \beta} a_{\alpha}^{\dagger} a_{\beta}+\frac{1}{4} \sum_{\substack{\alpha \gamma \\ \beta \delta}} V_{\alpha \gamma, \beta \delta} a_{\alpha}^{\dagger} a_{\gamma}^{\dagger} a_{\delta} a_{\beta}+\frac{1}{36} \sum_{\substack{\alpha \gamma \epsilon \\ \beta \delta \eta}} W_{\alpha \gamma \epsilon, \beta \delta \eta} a_{\alpha}^{\dagger} a_{\gamma}^{\dagger} a_{\epsilon}^{\dagger} a_{\eta} a_{\delta} a_{\beta} .
$$

ADC(3) self energy:

$$
\Sigma_{\alpha \beta}^{(\star)}(\omega)=-U_{\alpha \beta}+\Sigma_{\alpha \beta}^{(\infty)}+M_{\alpha, r}^{\dagger}\left[\frac{1}{\omega-\left[E^{>}+C\right]_{r, r^{\prime}}+i \eta}\right]_{r, r^{\prime}} M_{r^{\prime}, \beta}
$$

$$
+N_{\alpha, s}\left[\frac{1}{\omega-\left(E^{<}+D\right)-i \eta}\right]_{s, s^{\prime}} N_{s^{\prime}, \beta}^{\dagger}
$$

$$
\text { A=66, } \quad 2+3 \text { NF (NNLOsat) }
$$

Combined Gkv-ADC(1) + Dys ADC(3)

- Self energy:

$$
\begin{aligned}
\Sigma_{\alpha \beta}^{\star g_{1} g_{2}}(\omega)=\Sigma_{\alpha \beta}^{(\infty) g_{1} g_{2}} & +M_{\alpha}^{\dagger}\left[\frac{1}{\omega-E^{2 p 1 h}+i \eta}\right] M_{\beta} \\
\text { Gorkov-ADC(1) } & +N_{\alpha}\left[\frac{1}{\omega-E^{2 h 1 p}-i \eta}\right] N_{\beta}^{\dagger} \\
& \\
& \text { (only normal part!) }
\end{aligned}
$$

- Dyson ADC(3) needs s.p. energies: Optimized ref. states from Grkv

$$
\begin{gathered}
\mathcal{G}_{\alpha \beta}^{g_{1} g_{2}}(\omega)=\mathcal{G}_{\alpha \beta}^{O p R S, g_{1} g_{2}}(\omega)+\sum_{\cdots} \mathcal{G}_{\alpha \gamma}^{O p R S, g_{1} g_{3}}(\omega) \Sigma_{\gamma \delta}^{\star, g_{3} g_{4}}(\omega) \mathcal{G}_{\alpha \delta}^{g_{4} g_{2}}(\omega) \\
\mathcal{G}_{\alpha \beta}^{g_{1} g_{2}}(\omega) \rightarrow \mathcal{G}_{\alpha \beta}^{O p R S, g_{1} g_{2}}(\omega), \quad \omega^{O p R S}(k) \rightarrow \varepsilon^{O p R s}(k)=\mu \pm \omega^{O p R S}(k)
\end{gathered}
$$

- Spectra function

$$
S(k, \omega)=\mp \frac{1}{\pi} \Im m \mathcal{G}_{k=k^{\prime}}^{g_{1}=g_{2}=1}(\omega)
$$

Combined Gkv-ADC(1) + Dys $\operatorname{ADC}(3)$

- Self energy:

$$
\begin{aligned}
\Sigma_{\alpha \beta}^{\star g_{1} g_{2}}(\omega)=\sum_{\alpha \beta}^{(\infty) g_{1} g_{2}}+M_{\alpha}^{\dagger} & {\left[\frac{1}{\omega-E^{2 p 1 h}+i \eta}\right] M_{\beta} } \\
\text { Gorkov-ADC(1) } & +N_{\alpha}\left[\frac{1}{\omega-E^{2 h 1 p}-i \eta}\right] N_{\beta}^{\dagger}
\end{aligned}
$$

- Dyson ADC(3) needs s.p. energies: Optimized ref. states from Grkv

$$
\begin{aligned}
& \mathcal{G}_{\alpha \beta}^{g_{1} g_{2}}(\omega)=\mathcal{G}_{\alpha \beta}^{O p R S, g_{1} g_{2}}(\omega)+\sum_{\cdots} \mathcal{G}_{\alpha \gamma}^{O p R S, g_{1} g_{3}}(\omega) \Sigma_{\gamma \delta}^{\star, g_{3} g_{4}}(\omega) \mathcal{G}_{\alpha \delta}^{g_{4} g_{2}}(\omega) \\
& \mathcal{G}_{\alpha \beta}^{g_{1} g_{2}}(\omega) \rightarrow \mathcal{G}_{\alpha \beta}^{O p R S, g_{1} g_{2}}(\omega), \quad \omega^{O p R S}(k) \rightarrow \varepsilon^{O p R s}(k)=\mu \pm \omega^{O p R S}(k)
\end{aligned}
$$

- Spectra function

$$
S(k, \omega)=\mp \frac{1}{\pi} \Im m \mathcal{G}_{k=k^{\prime}}^{g_{1}=g_{2}=1}(\omega)
$$

Benchmark to other methods

$$
\text { - Bug in ORNL CCM codes: } \quad V^{2 N, e f f}=V^{2 N}+\sum_{k_{h} \leq k_{F}}\left(W^{3 N}\right)^{*} \rho\left(k_{h}\right)
$$

- Dyson-ADC(3) instability at small p-h gaps and fully resolved in Gorkov(1) + ADC(3)
- Methods now agree - new NNLOsat saturation!

Author Correction: Ab initio predictions link the neutron skin of ${ }^{208} \mathrm{~Pb}$ to nuclear forces

UNIVERSITA DEGLI STUDI DI MILANO
\rightarrow Optical potentials: hold promise for solving structure reaction inconsistency (but still difficult)
\rightarrow Diagrammatic Monte Carlo is a promising method to go forward
\rightarrow SCGF Corkov/ASC(3) computations in nuclear matter in the way.
Systematic improvement of Nuclear DFT from ab initio in nuclear matter is promising

And thanks to my collaborators (over the years...):

E. Vigezzi, S. Brolli

SURERTEY
M. Vorabbi, P. Arthuis

cea V. Somà, T. Duguet, A. Scalesi

Lund A. Idini

Backup slides

Diagrammatic Monte Carlo: normalization

The Markov chain must have the correct equilibrium distribution $w_{\alpha \beta}^{\omega}(\mathcal{C})$:

$$
\Sigma_{\alpha \beta}^{\star}(\omega)=\mathcal{Z}_{\alpha \beta}^{\omega}\left[\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{e^{i \arg \left[\mathcal{D}_{\alpha \beta}^{\omega}\left(\mathcal{C}_{i}\right)\right]}}{W_{o}(N)} 1_{\mathcal{T}_{i} \in \mathcal{S}_{\Sigma^{\star}}}\right]
$$

where the normalization $\mathcal{Z}_{\alpha \beta}^{\omega}$ is unknown but it can be estimated.

We turn propagators that close on themselves into zigzag lines with an arbitrary value

with k an arbitrary constant that can be used to optimize the convergence.

Diagrammatic Monte Carlo: normalization

Define the normalisation sector \mathcal{S}_{N} to be made of both these diagrams:

\mathcal{S}_{N} has weight:

$$
\mathcal{Z}_{N_{\alpha}}{ }^{\omega}:=\int_{\mathcal{S}_{N}} d \mathcal{C} w_{\alpha}^{\omega}=\frac{|g|}{4 \sqrt{\pi k}}+\frac{g^{2}}{16 \pi k}\left|G_{\alpha}(\omega)\right| W_{o}(2)
$$

Q These diagrams belong to w_{α}^{ω} but not to $\mathcal{S}_{\Sigma^{\star}}$
Q They are easy to integrate and to simulate with the Monte Carlo method

The expected number of times the normalization sector is visited (\mathcal{N}) gives the normalization $\mathcal{Z}_{\alpha}^{\omega}$:

$$
\frac{\mathcal{Z}_{N_{\alpha}}^{\omega}}{\mathcal{Z}_{\alpha}^{\omega}}=\lim _{n \rightarrow \infty} \frac{\mathcal{N}}{n}
$$

Then, we get the fundamental equation of DiagMC: $\Sigma_{\alpha}^{\star}(\omega)=\mathcal{Z}_{N}{ }_{\alpha}^{\omega} \lim _{n \rightarrow \infty} \frac{1}{\mathcal{N}} \sum_{i=1}^{n} \frac{e^{i \arg \left[\mathcal{D}_{\alpha}^{\omega}\left(\mathcal{C}_{i}\right)\right]}}{W_{o}(N)} 1_{\mathcal{T}_{i} \in \mathcal{S}_{\Sigma^{\star}}}$

Combined Gkv-ADC(1) + Dys ADC(3)

ADC(3) computations for infinite matter

Bubble nuclei... 34Si prediction

Duguet, Somà, Lecuse, CB, Navrátil, Phys.Rev. C95, 034319 (2017)

- ${ }^{34} \mathrm{Si}$ is unstable, charge distribution is still unknown
- Suggested central depletion from mean-field simulations
- Ab-initio theory confirms predictions
- Other theoretical and experimental evidence:

Phys. Rev. C 79, 034318 (2009),
Nature Physics 13, 152-156 (2017).
Validated by charge distributions and neutron quasiparticle spectra:

$r[f \mathrm{fm}]$

Reach of ab initio methods across the nuclear chart

Extension beyond few-nucleons thanks to:

- Soft (nearly perturbative) effective nuclear forces
- Diagrammatic many-body approaches

Legnaro Natl' Lab Mid Term Plan; Eur. Phys. J. Plus 138, 709 (2023)

Open challenges:

- Accuracy (better theory of nuclear forces)
- Mass number limit (optimised model spaces)

Precision \& scattering (high-order diag. resummations $\$$
H. Hergert, Frontiers in Phys 8, 379 (2020)
L. Coraggio, S. Pastore, CB, Frontiers in Phys 8, 626976 (2021)

