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All Ladders (GT) and ring modes (GW) are coupled 
to all orders. Two approaches: 

• Faddev-RPA allows for RPA modes 

• ADC(3) Tamn-Dancoff version using 3rd order 
diagrams as ‘seeds’: 

The Faddev-RPA and ADC(3) methods in a few words

n p

“Extended” 
Hartree-Fock

Σ★(ω) = R(2p1h) R(2h1p)

F-RPA:  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. A83, 042517 (2011) 

ADC(3): 
Lect. Notes in Phys 936 (2017)- 
Chapter 11.

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy. 
Both ladders and rings are needed for atomi nuclei:
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Explicit expressions for effective 1B and 2N interaction
operators are
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where, in the averaging of 2NFs and 3NFs, one- and two-
body reduced density matrices of the many-body system are
produced,
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The two-body density of Eq. (17) is obtained when the
opportune limits are taken in the time arguments of the 2B
Green’s function in Eq. (2).

We note that when the irreducible self-energy is computed
with the effective Hamiltonian of Eq. (12), a portion of the
many-body effects is incorporated in the interactions, which
become system dependent. This is done in a systematic way
and the procedure is in principle superior to the usual normal
ordering approach. Here the density matrices ρ and ( entering
the contraction of the interaction vertex are obtained from the
true correlated propagators; i.e., they are not computed from
the reference state.

The separation of a simple unperturbed Hamiltonian Ĥ0
from Eq. (11) is instrumental to any approach based on
perturbation theory (or on all-orders resummations): it allows
us to define a reference state upon which a perturbative series
is constructed and it also leads to the expansion of the Green’s
function in Feynman diagrams. Nevertheless, the auxiliary
potential Û eventually cancels from the SCGF formalism.
Considering the decomposition of Eq. (9), the irreducible
static self-energy *∞

αβ is given exactly by the 1B effective
interaction [22]:

*∞
αβ = Ũαβ . (18)

Since Û is added to the definition of the reference propagator
g(0) but subtracted in Eq. (14), it eventually cancels out exactly
from the Dyson equation [see Eq. (28)]. The dynamic self-
energy *̃αβ(ω) can still depend on the auxiliary potential
through the perturbative expansion in g

(0)
αβ (ω). However, in

the full self-consistent approach, the perturbative series is
restricted to skeleton diagrams where fully correlated propaga-
tors gαβ(ω) replace the uncorrelated ones. Thus, the partition
of the Hamiltonian into a uncorrelated part and residual part
is completely lost in the exact SCGF formalism and one may
think of the correlated propagator as playing the role of an
improved reference state.

(a) (b)

FIG. 1. One-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at second order in the
expansion of Eq. (9), using the effective Hamiltonian of Eq. (12).
The wiggly lines represent the 2N effective interaction of Eq. (15),
while the long-dashed lines represent the interaction-irreducible
3NF Ŵ .

For the irreducible self-energy, all one-particle irreducible,
skeleton and interaction-irreducible diagrams up to third order
have been derived in Ref. [22]. Within the skeleton expansion,
i.e., when single-particle propagators are correlated, the irre-
ducible self-energy up to the third order is given by the exact
static part, Eq. (18), the two second-order diagrams of Fig. 1,
and the 17 third-order diagrams of Figs. 2 and 6. In this case,
the energy-dependent part of the self-energy contains only
effective 2NFs and irreducible 3NFs as interaction insertions.
Note that because of Eq. (15), the contribution of Fig. 1(a)
actually corresponds to four separate diagrams if expressed
in terms of the bare Hamiltonian Eq. (10), of which three are
interaction reducible [22]. Likewise, many more reducible di-
agrams would appear at third order. Without propagator renor-
malization, when one considers the diagrammatic expansion
with reference propagators g

(0)
αβ (ω) as internal fermionic lines,

other diagrams with different topologies must be included
to take into account explicitly additional correlations in both
the static and dynamic part of the self-energy. These terms
contain also nonskeleton diagrams that include Ũ and are
presented in Appendix C.

In Fig. 1 we show the only two one-particle irreducible,
skeleton, and interaction-irreducible diagrams at second order.
These diagrams imply different sets of intermediate state

(a) (b)

(c)

FIG. 2. As described in the caption of Fig. 1 but for the third-order
diagrams with only 2p1h and 2h1p intermediate state configurations.
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The Self-Consistent Green’s Function with Faddev-RPA
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
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techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
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propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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68Ni:

considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].
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1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78
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A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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same result holds for the CCSD(T) geometry. The results
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zeta (cc-pVDZ) basis set are presented in Table I.
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and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
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while the matrix elements of the operators entering the Hamil-
tonian can be expressed completely in the dual basis or in a
mixed representation

tᾱβ̄ = ηαηβ t̃αβ̃ , (4a)

vᾱβ̄,γ̄ δ̄ = ηαηβηγ ηδvα̃β̃,γ̃ δ̃, (4b)

vᾱβ,γ δ̄ = ηαηδvα̃β,γ δ̃, (4c)

and so on. The advantage of the above relations is that many-
body operators are invariant with respect to (partial) changes
of the single-particle basis as long as barred quantities are
transformed consistently for each separate index. For exam-
ple,

∑

αβ

tαβc†
αcβ =

∑

ᾱβ

tᾱβ c̄†
αcβ =

∑

ᾱβ̄

tᾱβ̄ c̄†
α c̄β , (5)

and similarly for all other components of Eq. (1). This prop-
erty facilitates the definition of the Gorkov propagators in
Sec. II A and propagates to all tensor products of propaga-
tors and operators arising in the diagrammatic expansion of
perturbation and SCGF theories.

The introduction of the dual basis is not strictly mandatory
such that the Gorkov formalism presented in this work could
be derived without making use of barred indices. However,
definition (2) makes it easier to elegantly handle Nambu in-
dices for normal and anomalous propagators and accounts
automatically for the phases that are related to broken sym-
metries in the formalism. Only in the last step of deriving
working Gorkov-ADC(3) equations the transformation T is
identified with the time-reversal operator and the phases ηα

explicitly stated (see also Appendix A). More importantly, the
combined use of Nambu indices and an appropriate dual basis
can be extended into a generalized Nambu-covariant formal-
ism as discussed in Refs. [40,41]. In Nambu-covariant Green’s
function theory, all normal and anomalous propagators appear
as specific elements of a unique propagator carrying the com-
mon features in their spectral representations.

A. Gorkov propagators

The Gorkov-SCGF approach builds on relaxing the re-
quirement that the unperturbed state is an eigenstate of the
particle-number operator and seeking the solution of the
grand-canonical-like Hamiltonian2

& ≡ H − µN, (6)

where µ denotes the chemical potential and N is the particle
number operator. The Hamiltonian is partitioned into a un-
perturbed term &U containing only one-body vertices and an
interacting part as follows:

& ≡ &U + &I = (T + U − µN ) + (−U + V ), (7)

where U denotes an external mean-field-like potential.

2Being presently interested in a zero-temperature formalism, the
T -dependent term of the grand-canonical potential drops out. More-
over, it is understood that a separate chemical potential for each
different fermion is to be considered when the system consists of
more than one type of particle.

We consider eigenstates of the Hamiltonian conserving
even- (e) or odd- (o) number parity

&
∣∣'e(o)

k

〉
= &k

∣∣'e(o)
k

〉
, (8)

where

|'e(o)〉 =
∞∑

n=0

c2n(2n+1)|ψ2n(2n+1)〉 (9)

is a superposition of states |ψ l〉 that are eigenstates of N with
eigenvalue l . Rather than the ground state of H , Gorkov SCGF
formalism targets the state |'0〉 minimizing

&0 = min
|'0〉

{〈'0|&|'0〉} (10)

under the constraint

N = 〈'0|N |'0〉, (11)

where N denotes the number of particles for the system under
consideration. While the exact |'0〉 associated with a finite
system is indeed an eigenstate of N , it is not enforced to do so
in the thermodynamic limit or when being approximated. In
such cases, it is only constrained to carry the particle number
N on average.

For a typical superfluid system approaching the thermody-
namic limit, the ground-state energies of Eq. (1) associated
with N particles, H |ψN

0 〉 = EN
0 |ψN

0 〉, will differ from each
other only by multiples of the chemical potential

EN±2n
0 ≈ EN

0 ± 2nµ ± n)εP for n = 1, 2, 3, . . . , (12)

since µ is substantially independent of N at large particle
number and, likewise, the average cost for the possible cre-
ation of Cooper pairs, )εP, will be the same every time two
particles are added. Equations (10) and (11) naturally allow
us to interpret state |'0〉 as the fermionic part of a ground-
state wave function in equilibrium with a reservoir of Cooper
pairs. Hence, defining Gorkov propagators with respect to
|'0〉 directly provides a theory for superconductivity and
superfluidity. For finite-size systems, such as atomic nuclei
or molecules, Eq. (12) may hold only in a very approximate
way. Because both Hamiltonians H and & preserve particle
number, the requirements (10) and (11) will force |'0〉 to be
the true ground state |ψN

0 〉, with an exact number of particles.
The breaking of particle-number symmetry arises natu-

rally, in most cases, whenever approximations have to be
made, typically in computing the self-energy. This is true
for both Dyson and Gorkov formulations of Green’s function
theory since they equally rely on an open Fock space, where
mixing of particle number as in Eq. (9) is fully allowed. In
fact both, formulations can be seen as just one theory where
in the first case the reference state preserves the symmetries
of the Hamiltonian from the start, whereas in the second case
one begins with a symmetry-broken reference but with the
advantage of a better radius of convergence for the perturba-
tive expansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number shall
be restored.

For Gorkov theory, the symmetry breaking is more sub-
stantial because it is imposed into the formalism from the start
through &U . Hence, one may wish to eventually restore the
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tᾱβ c̄†
αcβ =

∑
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the true ground state |ψN

0 〉, with an exact number of particles.
The breaking of particle-number symmetry arises natu-

rally, in most cases, whenever approximations have to be
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mixing of particle number as in Eq. (9) is fully allowed. In
fact both, formulations can be seen as just one theory where
in the first case the reference state preserves the symmetries
of the Hamiltonian from the start, whereas in the second case
one begins with a symmetry-broken reference but with the
advantage of a better radius of convergence for the perturba-
tive expansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number shall
be restored.

For Gorkov theory, the symmetry breaking is more sub-
stantial because it is imposed into the formalism from the start
through &U . Hence, one may wish to eventually restore the
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unperturbed ones, i.e.,
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ab (ω) ≡

↑ ω

b

a

,
(B5a)

G12
ab (ω) ≡

↑ ω

b̄

a

,
(B5b)

G21
ab (ω) ≡

↑ ω

b

ā

,
(B5c)

G22
ab (ω) ≡

↑ ω

b̄

ā

.
(B5d)

Diagrammatic rules to compute irreducible self-energies are

the same as for reducible ones, with the only difference

that dressed propagators (B5) have to be used instead of

unperturbed ones.

2. Self-energies

The present section addresses the derivation of first- and

second-order self-energy diagrams.

a. First order

The first normal contribution corresponds to the standard

Hartree-Fock self-energy. It is depicted as
Σ 11 (1)ab (ω) =

b
c

d

a

↓ ω , (B6)

and reads

! 11 (1)
ab (ω) = −i

∫

C↑

dω ′

2π

∑

cd

V̄acbd G 11
dc (ω ′),

(B7)

where the energy integral is to be performed in the upper

half of the complex energy plane, according to the convention

introduced in Rule 8. Inserting the Lehmann form (38a) of the

propagator one obtains
! 11 (1)

ab (ω) = −i
∫

C↑

dω ′

2π

∑

cd,k

V̄acbd U k
d U k∗

cω ′ − ωk + iη
− i

∫

C↑

dω ′

2π

∑

cd,k

V̄acbd V̄ k∗
d V̄ k

cω ′ + ωk − iη

= ∑

cd,k

V̄acbd V̄ k∗
d V̄ k

c ,

(B8)

where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā

↓ ω , (B9)

which reads

! 22 (1)
ab (ω) = −i

∫

C↓

dω ′

2π

∑

cd

V̄
b̄d̄āc̄ G 22

dc (ω ′)= −i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
cω ′ − ωk + iη

− i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄

Ū k∗
d Ū k

cω ′ + ωk − iη

= − ∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
c= − ∑

cd,k

V̄
b̄cād V̄ k

c V̄ k∗
d= −! 11 (1)

b̄ā= − [
! 11 (1)

āb̄
]∗
.

(B10)

The anomalous contributions to the self-energy at first order

are

Σ 12 (1)ab (ω) =
b̄

← ω

a
c

d̄

,
(B11)

Σ 21 (1)ab (ω) =

d

← ω

c̄
ā

b
, (B12)

and are written, respectively, as! 21 (1)
ab (ω) = − i

2

∫

C↑

dω ′

2π

∑

cd

V̄
ab̄cd̄ G 12

cd (ω ′)= − i

2

∫

C↑

dω ′

2π

∑

cd,k

V̄
ab̄cd̄ U k

c V k∗
dω ′ − ωk + iη
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where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.
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Ū k∗
d Ū k
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ā

.
(B5d)

Diagrammatic rules to compute irreducible self-energies are

the same as for reducible ones, with the only difference

that dressed propagators (B5) have to be used instead of
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where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā
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➢ Generates a set of two normal and two anomalous propagators:
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:
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whereas the corresponding first-order corrections to the en-
ergy matrix are
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(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other
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FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
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λ , (47a)

C (IId)
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6
P123
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λ

)∗
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U k3
µ , (47b)

D̄(IIc)
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6
P123
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µνλ
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U k3
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(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
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6
P123
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µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are
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E (hh)
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)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
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)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,
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)

for forward poles
1
6P123P456

(
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)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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Background: The Gorkov approach to self-consistent Green’s function theory has been formulated by Somà,
Duguet, and Barbieri in [Phys. Rev. C 84, 064317 (2011)]. Over the past decade, it has become a method of refer-
ence for first-principles computations of semimagic nuclear isotopes. The currently available implementation is
limited to a second-order self-energy and neglects particle-number nonconserving terms arising from contracting
three-particle forces with anomalous propagators. For nuclear physics applications, this is sufficient to address
first-order energy differences (i.e., two neutron separation energies, excitation energies of states dominating
the one-nucleon spectral function), ground-state radii and moments on an accurate enough basis. However,
addressing absolute binding energies, fine spectroscopic details of N ± 1 particle systems or delicate quantities
such as second-order energy differences associated with pairing gaps, requires going to higher truncation orders.
Purpose: The formalism is extended to third order in the algebraic diagrammatic construction (ADC) expansion
with two-body Hamiltonians.
Methods: The expansion of Gorkov propagators in Feynman diagrams is combined with the algebraic diagram-
matic construction up to the third order as an organization scheme to generate the Gorkov self-energy.
Results: Algebraic expressions for the static and dynamic contributions to the self-energy, along with equa-
tions for the matrix elements of the Gorkov eigenvalue problem, are derived. It is first done for a general basis
before specifying the set of equations to the case of spherical systems displaying rotational symmetry. Workable
approximations to the full self-consistency problem are also elaborated on. The formalism at third order it thus
complete for a general two-body Hamiltonian.
Conclusions: Working equations for the full Gorkov-ADC(3) are now available for numerical implementation.

DOI: 10.1103/PhysRevC.105.044330

I. INTRODUCTION

Ab initio quantum many-body computations are crucial to
high-precision investigations in several fields of physics. Most
applications to finite-size fermion systems concern nuclear
physics and quantum chemistry to the point that these dis-
ciplines often share the same computational techniques and
cross fertilization among the two has led to advancements
of ab initio theories over the years. For nuclear physics, the
past two decades have witnessed remarkable breakthroughs
in first-principles computations of nuclear structure that ex-
ploit soft nuclear interactions based on chiral effective-field
theory [1]. The availability of many-body methods that scale
favorably with particle number has enabled precision predic-
tions of medium-mass isotopes and the possibility to confront
experimental information of exotic isotopes at the limits of
stability (see Refs. [2,3] for a review).

Many successful approaches, such as many-body pertur-
bation theory (MBPT) [4], self-consistent Green’s function
(SCGF) [5], coupled cluster (CC) [6], and in-medium simi-
larity renormalization group [7] can reach sizable systems by
restricting the Fock space to selected excited configurations
for which it is possible to resum infinite series of diagrams.
However, in their basic formalism, they are limited to closed-
shell systems. For open-shell cases, near-degeneracies in the
single-particle spectrum often prevent the use of any perturba-
tion expansion. The possible ways around this issue are either
multireference approaches or the use of symmetry-breaking
reference states. In the first case, all degenerate configurations
are diagonalized explicitly, which, however, adds a costly
step to the calculation that scales exponentially with system
size [8], with the notable exception of a recently proposed
multireference many-body perturbation theory [9–11]. The
second path relies on using a reference state that explicitly
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D̄†

Σ11
αβ(ω) :

FIG. 4. (left column) The two time orderings through which
the diagram of Fig. 2(a) contributes to !̃11(ω). The top (bottom)
diagram corresponds to the forward-going (backward-going) prop-
agation. The matrices C and D to which a given vertex contributes
are indicated next to it. (right column) Analogous time orderings
for the corresponding contributions to !̃21(ω) [Fig. 2(b)]. The C
(D) topologies that contribute to the anomalous index of !̃21(ω) are
highlighted with green (orange) vertices. A comparison between the
vertices on the left- and right-hand sides elucidates the occurrence of
the same couplings C and D across all Eqs. (29).

to !̃21(ω): the top part of the upper-right diagram is exactly
the same as the top part of the lower-left one, but it will
enter as a transposed matrix in the Lehmann representation
because it is an exit point of the self-energy in the first
case and entry point in the second. This property is general
because the net number of propagator (lines) flowing into
the interaction vertex is reversed exactly in the same way
both for backward time propagation and for the inversion of
a Nambu indices between normal to anomalous. It is easy
to convince oneself that the same considerations apply to
particle-number nonconserving interactions, as long as these
are Hermitian. Moreover, as for the case of quasiparticle
antisymmetrization, the presence of anomalous propagators
allows for any possible topological combination of lines and
ensures that this correspondence is realized also for more
complex diagrams, at any order in the Feynman expansion.
Therefore, any portion of Feynman diagram contributing to
a normal (anomalous) forward part of the self-energy will
contribute identically to the backward part of corresponding
anomalous (normal) case. It follows that exactly the same
matrices C and D must appear in all four self-energies of
Eqs. (29).

The rigorous proof of this property is beyond the scope of
the present work and is not elaborated on further. However,
let us recall that relations (29) naturally stem out from Nambu
covariant theory of Ref. [40]. In this case both the normal and
anomalous contributions are embedded in a single propagator
such that the C and D couplings are part of a unique cou-
pling matrix. For our purposes, we have verified by hand that
Eqs. (29) are satisfied by all diagrams discussed in the present
work.

B. Third-order skeleton diagrams

Following the above discussion one concludes that it is
sufficient to derive ADC(3) expressions of the coupling and
interaction matrices associated with one particular Gorkov
self-energy. While the diagrams contributing to !̃11(ω) are
presently employed, the other self-energies, Eqs. (29b)–(29d),
were checked to lead to the same results.

There exist 17 possible third-order skeleton diagrams that
must be grouped in three classes on the basis of their con-
nection through Pauli exchanges of propagator lines. These
are depicted respectively in Figs. 5–7. Each middle vertex in
these diagrams acts as a seed for the all-orders Tamm-Dancoff
resummations generated by ADC(3).

Diagram 5(a) is the diagram that makes two-particle and
two-hole interact in the ISCs in the usual Dyson-ADC(3)
formalism, respectively for forward and backward time prop-
agation. Adding diagrams 5(b), 5(c), and 5(d) guarantees the
antisymmetrization with respect to the third, noninteracting
quasiparticle. The frequency integrals needed to work out
the algebraic expressions of these diagrams are discussed in
Appendix C and lead to the same contributions as in Eqs. (39),
plus second-order corrections to the coupling amplitudes and
first-order correction to the energy matrix.

Let us first define the tensor

t k3k4
k1k2

≡
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δU k3
γ U k4

δ

−
(
ωk1 + ωk2 + ωk3 + ωk4

) (42)

that is closely related to the lowest-order double amplitude
in Bogoliubov coupled cluster (BCC) theory [47]. Note that
BCC expressions are typically derived performing first the
normal ordering of the Hamiltonian with respect to the Bo-
goliubov vacuum and expressing it in terms of Bogoliubov
quasiparticle operators whereas the original matrix elements
of V appear in Eq. (42). In the special case of a HFB mean
field, U and V amplitudes account for the normal ordering
and t k3k4

k1k2
does indeed reduce to the lowest order BCC double

amplitude. Consequently, Eq. (42) extends the concept of
BCC amplitudes to account for the strength fragmentation of
a dressed propagator. With this tensor at hand, the contribu-
tions to the coupling amplitudes resulting from the diagrams
displayed in Fig. 5 read

C (IIa)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k1k2
k4k5

V̄k3
λ , (43a)

C (IIb)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k1k2
k4k5

U k3
µ , (43b)

D̄(IIa)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k4k5
k1k2

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (43c)

D̄(IIb)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k4k5
k1k2

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ. (43d)

The first-order corrections to the energy matrix differ accord-
ing to whether they refer to forward or backward poles of the

044330-9

BARBIERI, DUGUET, AND SOMÀ PHYSICAL REVIEW C 105, 044330 (2022)

(a) (b) (c) (d)

FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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(a) (b) (c) (d)

FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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D̄(IIf )
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
µ t k2k8

k3k7

(
U k7

ν V̄k8
λ

)∗
vµν,αλ, (50e)

D̄(IIg)
r,α = 1√

6
A123

∑

µνλ
k7k8

U k1
λ t k2k8

k3k7

(
U k7

µ U k8
ν

)∗
vµν,αλ, (50f)

whereas the particle-hole contribution to the ISC energy inter-
action matrix is given by

E (Ic)
r,r′ = 1

6A123A456
(
δk1,k4E

(ph)
k2k3,k5k6

)
, (51)

with

E (ph)
k2k3,k5k6

=
∑

αβγ δ

(
U k2

α V̄k3
β

)∗
vαδ,βγU k5

γ V̄k6
δ . (52)

C. Nonskeleton contributions

Sections III A and III B exhaust all the diagrams that enter
fully self-consistent computations up to ADC(3). In this case,
the self-energy is purely a functional of the fully dressed
propagator, G(ω), and all above equations are expressed in
terms of its spectroscopic amplitudes and poles, Eqs. (19)–
(21). If, instead, the many-body expansion is based on the
unperturbed reference propagator G(0)(ω) additional compos-
ite, i.e., nonskeleton, diagrams need to be included. Thus, the
present section along with Appendix B introduce all remain-
ing composite diagrams up to third order.

The unperturbed propagator (25) has a spectral representa-
tion analogous to Eqs. (18)

G(0)11
αβ (ω) =

∑

k

{
Uk

αUk
β

∗

ω − ε (0)
k + iη

+
V̄k

α
∗V̄k

β

ω + ε (0)
k − iη

}

, (53a)

G(0)12
αβ (ω) =

∑

k

{
Uk

αVk
β

∗

ω − ε (0)
k + iη

+
V̄k

α
∗Ūk

β

ω + ε (0)
k − iη

}

, (53b)

G(0)21
αβ (ω) =

∑

k

{
Vk

αUk
β

∗

ω − ε (0)
k + iη

+
Ūk

α
∗V̄k

β

ω + ε (0)
k − iη

}

, (53c)

G(0)22
αβ (ω) =

∑

k

{
Vk

αVk
β

∗

ω − ε (0)
k + iη

+
Ūk

α
∗Ūk

β

ω + ε (0)
k − iη

}

, (53d)

where we used the notation ε (0)
k , Uk , and Vk to stress that these

are not correlated spectroscopic quantities but unperturbed
ones. For the present purpose, these are the solution of the
HFB eigenvalue problem associated with *U ,

∑

β

(
tαβ + uαβ − µδαβ uan.

αβ̄

−
(
uan.

ᾱβ

)∗ −tβ̄ᾱ − uβ̄ᾱ + µδαβ

)(
Uk

β

Vk
β

)

= ε (0)
k

(
Uk

α

Vk
α

)
. (54)

Since the composite diagrams discussed in this section assume
a HFB reference state, their contributions to ADC interactions

and amplitudes are expressed in terms of the unperturbed state
generated by Eq. (54).

1. Static self-energy

The composite diagrams contributing to !(∞)
αβ (ω) can be

obtained by expanding Gorkov Eq. (26) up to second order
and by inserting the results into the diagrams of Fig. 1. The
resulting equations for the static self-energies are rather cum-
bersome and are detailed in Appendix B. However, these are
not needed in the vast majority of applications since their
self-consistent counter part, Eqs. (37), is easier to compute
and contains all of them implicitly.

2. Third-order terms

The energy-dependent !̃(ω) at second order receives no
contributions from self-energy insertions. Thus, the only com-
posite diagrams appear at order three and involve the insertion
of a static one-body potential to the known diagrams of Fig. 2.
This leads to the ten diagrams displayed in Fig. 8 for a generic
external potential U . In the following, we provide the contri-
butions from these diagrams in terms of the matrix elements
of U and the amplitudes of Eq. (53), with the understanding
that these need to be substituted with those of V HFB − U
introduced by the perturbation *I from Eq. (7).

The top two rows in Fig. 8 cover all diagrams containing
self-energies insertions originating from the normal compo-
nent of U , i.e., the term associated with matrix elements uαβ

in Eq. (13). They contribute to the coupling matrices C and D
through the normal BCC singlet amplitude

t k1
k2

≡
∑

αβ

V̄k1
α uαβUk2

β

−
(
ωk1 + ωk2

) , (55)

and to the energy matrix through particle and hole interactions

E (p)
k1k2

≡
∑

αβ

(
Uk1

α

)∗
uαβUk2

β , (56a)

E (h)
k1k2

≡
∑

αβ

V̄k1
α uαβ

(
V̄k2

β

)∗
. (56b)

All together, this leads to the following ADC(3) contributions
to the coupling matrices:

C (IIh)
α,r = 1√

6
A123

∑

µνλ
k7

vαλ,µν

(
V̄k7

µ

)∗[
t k7
k1

− t k1
k7

]
Uk2

ν V̄k3
λ , (57a)

C (IIi)
α,r = 1√

6
P123

∑

µνλ
k7

vαλ,µν

(
Uk7

λ

)∗[
t k7
k1

− t k1
k7

]
Uk2

µ Uk3
ν , (57b)

D̄(IIh)
r,α = 1√

6
A123

∑

µν
λk7

(
Uk7

µ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

ν Uk3
λ vµν,αλ, (57c)

D̄(IIi)
r,α = 1√

6
P123

∑

µν
λk7

(
V̄k7

λ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

µ V̄k3
ν vµν,αλ, (57d)
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The expectation value of any one-body operator O is given by

〈!0|O|!0〉 =
∑

αβ

oαβρβα, (23)

whereas the Migdal-Galitski-Koltun energy sum rule deliver-
ing the ground-state energy

%0 = 1
2π

∫ 0

−∞
[tαβ − µδαβ + ωδαβ]ImG11

βα (ω)dω (24)

is exact for a Hamiltonian with up to two-particle interactions.

B. Gorkov equations

The perturbative expansion of Gorkov propagators is
devised following the standard approach of defining an unper-
turbed propagator, G(0)(t − t ′), according to definitions (14)
and (15) but with % replaced by the one-body grand potential
%U . After Fourier transform to frequency domain, one finds

G(0)(ω) = [ωI − !U ]−1, (25)

where model space and Nambu indices are implicit and the
matrix inversion is performed with respect to both. One then
exploits the interaction picture to devise a perturbative expan-
sion of the full propagator of Eq. (16) that can be represented
as a series of Feynman diagrams in powers of the perturbation
%I [25].

Doing so, the standard Dyson equation for the interacting
propagator G(ω) is generalized to the set of coupled Gorkov
equations for the four propagators (18). Using Nambu’s ma-
trix notation, they read as

Gαβ (ω) = G(0)
αβ (ω) +

∑

γ δ

G(0)
αγ (ω)"*

γ δ (ω)Gδβ (ω), (26)

where the four self-energies

"*
αβ (ω) ≡

(
+*11

αβ (ω) +*12
αβ (ω)

+*21
αβ (ω) +*22

αβ (ω)

)
(27)

include all possible one-particle irreducible diagrams stripped
of their external legs. The remaining reducible diagrams are
then generated in a nonperturbative way through the all-orders

resummation generated by Eq. (26). In standard perturbation
theory, a given approximation to "*(ω) is a functional of the
unperturbed propagators G(0)(ω) and hence depends directly
on the choice of the reference state associated with %U . In
SCGF theory, the series of diagrams to be resummed is fur-
ther restricted to skeleton diagrams displaying no self-energy
insertion, provided that all propagator lines are replaced by
the interacting propagator G(ω). Since the full Dyson-Gorkov
series is included in such a propagator, the SCGF procedure
not only reduces the number of Feynman diagrams that need
to be dealt with but it implicitly accounts for higher-order
terms that are beyond the perturbative truncation chosen for
the self-energy. The self-energy becomes a functional of the
interacting propagator, "*[G; T,V ] and is no longer affected
by the choice of the unperturbed state. The price to pay for
such improvements is that diagrams expressed in terms of
G(ω) are more demanding to deal with, due to the rich pole
structure of Eqs. (18). Furthermore, "*(ω) and the Gorkov
equations (26) have respectively to be computed and solved
repeatedly through an iterative procedure.

The most general structure of the Gorkov self-energy can
be written as

"*
αβ (ω) = −U + "(∞)

αβ + "̃αβ (ω), (28)

where the auxiliary potential term U arising from %I at
first order is separated from the proper part of the self-
energy. The term "(∞) embodies the limit of the proper
self-energy to ω → ±∞ and represents the mean field
experienced by a particle in the correlated medium. It re-
duces to the Hartree-Fock-Bogoliubov (HFB) potential for a
self-consistent first-order truncation of "*(ω) but otherwise
includes additional in-medium corrections at higher orders.
Hence, it is referred to as the correlated HFB (cHFB) poten-
tial.

The components of the dynamic self-energy "̃(ω) also
have a spectral representation analogous to Eqs. (18). In this
case, the poles of the Lehmann representation are associated
with intermediate-state configurations (ISCs) combining dif-
ferent quasiparticle excitations {|!k〉; ωk}. To write the most
general form of the dynamic self-energy, a generic index r is
employed to label all possible ISCs that are eventually made
explicit in Sec. III. Thus, the general form writes

+̃11
αβ (ω) =

∑

rr′

{
Cα,r

[
1

ωI − E + iη

]

r,r′
C†

r′,β + D̄†
α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29a)

+̃12
αβ (ω) =

∑

rr′

{
Cα,r

[
1

ωI − E + iη

]

r,r′
D∗

r′,β + D̄†
α,r

[
1

ωI + ET − iη

]

r,r′
C̄T

r′,β

}
, (29b)

+̃21
αβ (ω) =

∑

rr′

{
DT

α,r

[
1

ωI − E + iη

]

r,r′
C†

r′,β + C̄∗
α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29c)

+̃22
αβ (ω) =

∑

r‘r′

{
DT

α,r

[
1

ωI − E + iη

]

r,r′
D∗

r′,β + C̄∗
α,r

[
1

ωI + ET − iη

]

r,r′
C̄T

r′,β

}
, (29d)

where Er,r′ denotes the elements of an energy matrix associated with an interaction among ISCs r and r′. Matrix E is Hermitian,
so that ET = E∗. The coupling matrices C and D couple single-particle and ISC spaces, with the elements of the barred matrices
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46Ar(3He,d)47K  at  GANIL

d3/2 - s1/2 inversion 
revisited from adding 
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46Ar(3He,d)47K  at  GANIL : New charge bobble in 46Ar

S. Brolli (BSc thesis)
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Methods

Data analysis The angular distributions of the
direct reactions were computed in the finite-
range DWBA approximation making use of the
FRESCO code [46]. The global optical potential
by Becchetti et al. [47] and by Han et al. [48] were
adopted for the entrance channel 3He-46Ar and for
the exit channel d-47K, respectively. These poten-
tials provide the best fit for the mirror reaction
48Ca(d,3He)47K [49] and the deuteron scattering
on 47K [50].

An a advantage of using direct reactions is
the strong dependence of their di↵erential cross
section on the angular momentum ` of the trans-
ferred nucleon. In particular, the addition to an
s-wave (` = 0) single-particle orbital leads to a dis-
tribution for the ejected deuteron that is peaked
toward backward angles in the laboratory frame of
reference, due the inverse kinematics of the reac-
tion, that can clearly be distinguished from the
distribution of f (` = 3) and d (` = 2) waves.

The computed di↵erential cross sections serve
as an input for a Monte Carlo GEANT4 [51]
simulation that extracts the response of the exper-
imental apparatus for the population of the three
di↵erent states of 47K: ` = 0 transfer to the 1/2+

g.s., ` = 2 transfer to the 3/2+ state and ` = 3 to
the 7/2�. The spectroscopic factors are extracted
with a maximum likelihood fit considering the
following relationship with the inclusive di↵eren-
tial cross section [34], where the k indexes the
populated states:

d�

d⌦
=

X

k

gk C2Sk

d�SP

k

d⌦
,

where �SP

k
is the theoretical cross section relative

to a single-particle orbit, g represents the sta-
tistical factor and equals the orbital degeneracy,
(2j + 1), for particle addition. The spectroscopic
factor, C2Sk, appears as a modulation factor that
can be interpreted within a theoretical framework
as a fraction of the full orbital occupation.

The maximization of the likelihood is per-
formed on the experimental distribution of the
emission angle while the excitation energy serves
as an independent observation.
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Fig. 5: Comparison of experimental results and
theoretical models. The horizontal (vertical) axes
correlate the amount of ` = 2 (` = 3) over the
amount of transfer to the ground state, ` = 0.
The maximum likelihood analysis, combining the
Monte Carlo GEANT4 simulation and the exper-
imental data indicates a suppressed ` = 2 transfer
to the first excited 3/2+ state of 47K.

The extraction of absolute cross sections, and
thus absolute spectroscopic factors, is avoided due
to the uncertainty caused by the gas density at
temperatures close to the critical point of 3He
and the e↵ect of optical potentials on the abso-
lute cross section. These uncertainties a↵ect in the
same way the di↵erent `-wave transfers and can-
cel out when the relative value of spectroscopic
factors is extracted. The optimal likelihood profile
for the experimental ratios C2S(` = 2)/C2S(` =
0) and C2S(` = 3)/C2S(` = 2) is displayed in
Figure 5 along with the SCGF ab initio simula-
tions discussed in the main text. The prediction
from the NNLOsat Hamiltonian agrees within 1�
with the experiment.

�-ray coincidence analysis. The probability
of detecting discrete �-rays o↵ers the possibility
for an independent analysis with respect to the
angular distribution and the excitation energy.
Neglecting the condition of detecting deuterons
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Microscopic optical potential
Nuclear self-energy                  : 
• contains both particle and hole props. 

• it is proven to be a Feshbach opt. pot ! in general it is non-local !

Solve scattering and overlap functions directly in momentum space:

mean-field

Particle-vibration 
couplings:

chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
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The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as
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The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
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which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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NCSM/RGM [without core excitations] 

      EM500:  NN-SRG 𝜆SRG= 2.66 fm-1, Nmax=18 (IT) 
       [PRC82, 034609 (2010)] 

      NNLOsat: Nmax=8 (IT-NCSM) 

SCGF [Σ(∞)  only],  always Nmax=13

Benchmark with NCSM-based scattering.    

Scattering from mean-field only:

16O(n,n’)16O

Low energy scattering – from SCGF
[A. Idini, CB, Navratil, 
Phys. Rev. Lett. 123, 092501 (2019) ]



Benchmark with NCSM-based scattering.    

Scattering from mean-field only:

16O(n,n’)16O

Low energy scattering – from SCGF

Full self-energy from SCGF:

[A. Idini, CB, Navratil, 
Phys. Rev. Lett. 123, 092501 (2019) ]



Role of intermediate state configurations (ISCs)
[A. Idini, CB, Navrátil, 
Phys. Rev. Lett. 123, 092501 (2019)]n-16O, total elastic cross section

50% of 2p1h/2h1p poles suppressed

High order configurations, or 
ADC(n>>3), to be critical for fully 
ab initio optical potentials

chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X
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The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as
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X

n

hΨA
0 jcαjΨAþ1

n ihΨAþ1
n jc†βjΨA

0 i
E − EAþ1

n þ EA
0 þ iΓ

þ
X

k

hψA
0 jc

†
αjΨA−1

k ihΨA−1
k jcβjΨA

0 i
E − EA

0 þ EA−1
k − iΓ

: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
αβðE;ΓÞ ¼ Σð∞Þ

αβ þ
X

i;j

M†
α;i

!
1

E− ðK> þCÞ þ iΓ

"

i;j
Mj;β

þ
X

r;s

Nα;r

!
1

E− ðK< þDÞ− iΓ

"

r;s
N†

s;β; ð2Þ

where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X

n

hΨA
0 jcαjΨAþ1

n ihΨAþ1
n jc†βjΨA

0 i
E − EAþ1

n þ EA
0 þ iΓ

þ
X

k

hψA
0 jc

†
αjΨA−1

k ihΨA−1
k jcβjΨA

0 i
E − EA

0 þ EA−1
k − iΓ

: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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Microscopic optical potential
Nuclear self-energy                  : 
• contains both particle and hole props. 

• it is proven to be a Feshbach opt. pot ! in general it is non-local !
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Elastic nucleon nucleus scattering
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(Ab Initio) Optical potentils workshop at the ECT*

Direct nuclear reactions, processes such as nucleon transfer, knockout, anti-nucleon capture have been extensively exploited by experiments to learn about the 
structure of exotic isotopes far away from stability, to infer properties of the nuclear forces, to describe nucleosynthesis and to learn about the nuclear equation of 
state. In this respect, nucleon-nucleus optical potentials are of great importance since they are the fundamental building blocks needed to predict reaction 
observables to address such a wide range of Nuclear Physics facets. Traditional phenomenological optical potential parameterizations are fully reliable only in 
specific regions of the nuclear chart, near the stable isotopes they were fitted to. On the contrary, microscopically derived potentials can be systematically extended 
to isotopes far from stability that are the focus of modern experimental searches. This workshop will address the state-of-the-art of nuclear optical potentials to foster 
advances in their accuracy and handling of uncertainty propagation.

June 17-24, 2024



(Toward) 
Diagrammatic Monte Carlo (DiagMC) 

in finite systems

See also poster form S. Brolli (MSc Thesis)



Green’s function theory beyond ADC(3)? 

The Green’s function is found as the exact solution of the Dyson equation: The Green’s function is found as the exact solution of the Dyson equation
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It requires knowing the self-energy which is the sum of an infinite series of Feynman diagrams: 

The number of required diagrams 

explodes (factorially!) with the order 

of the approximation…



~102

1

3

19

I

II

III

IV

# of diagrams:Order:

V ~103

Diagrams grow factorially (more than exponentially) with the order 

A direct calculation of all diagrams beyond order three is unfeasible. 

Diagrammaqc Monte Carlo (DiagMC) samples diagrams in their topological space 
using a Markov chain. 

S. Brolli (Masters thesis)



Diagrammatic Monte Carlo: overviewOverview of the math
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The updates
The updates

1 Change Frequency
2 Change Single-Particle Quantum Numbers
3 Add Loop
4 Remove Loop
5 Reconnect

Standard Monte Carlo

Monte Carlo on the topology

The acceptance ratio of each update must be fixed to reproduce the
correct equilibrium distribution (w!

↵�
).

With a self-consistent iterative scheme - bold diagrammatic Monte
Carlo (BDMC) - we are ergodic up to third order.
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Change Single-Particle Quantum Numbers:
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The unphysical propagators are turned into physical ones when reconnected.
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The unphysical propagators are turned into 
physical ones when reconnected. 

& Remove Loop:
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Results of the simulation for D=4 This method has been implemented for infinite systems.
It has never been tried for systems with discrete energy levels (nuclear
physics and quantum chemistry).

As a first application we considered the simple model
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4.3. RESULTS OF THE SIMULATION FOR D = 4 57

Figure 4.1: Components ↵ = 0 and ↵ = 2 of the imaginary part of the self-energy for different
values of the coupling g. The blue line is the results obtained with the BDMC simulation, while
the red line is the best fit as a sum of two Lorentzians. The results for the two values of ↵ = 0, 2
are displayed respectively on the left and on the right of the graph. The error bars are calculated
as explained in the main text.
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
αβðE;ΓÞ ¼ Σð∞Þ

αβ þ
X

i;j

M†
α;i

!
1

E− ðK> þCÞ þ iΓ

"

i;j
Mj;β

þ
X

r;s

Nα;r

!
1

E− ðK< þDÞ− iΓ

"

r;s
N†

s;β; ð2Þ

where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X

n

hΨA
0 jcαjΨAþ1

n ihΨAþ1
n jc†βjΨA

0 i
E − EAþ1

n þ EA
0 þ iΓ

þ
X

k

hψA
0 jc

†
αjΨA−1

k ihΨA−1
k jcβjΨA

0 i
E − EA

0 þ EA−1
k − iΓ

: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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Richardson pairing model with D states, half filled:



Results of the simulation for D=4 
Results of the simulation for D=4

Imaginary part of the component ↵ = 0 of the diagonal self-energy for
different values of the coupling:

We fitted the imaginary part of the self-energy as a sum of Lorentzians.
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This method has been implemented for infinite systems.
It has never been tried for systems with discrete energy levels (nuclear
physics and quantum chemistry).

As a first application we considered the simple model
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Reorganization in terms of ladders (𝜞)

Results of the simulation

Imaginary part of the component ↵ = 0 of the diagonal self-energy
(g = �0.6):

New updating scheme: Old updating scheme:

We are able to treat the case g < �0.4!
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Imaginary part of the component α=0 of the diagonal self-energy (g=-0.6):

It restores the correct spectral representaqon also for g < −0.4!

A different updating scheme

We can reorganize the self-energy expansion

and devise a new updating scheme:

�(0) := + + + ...

⌃? = �(0) +

�(0)

�(0)

�(0)

+ ...
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Reorganization in terms of ladders (𝜞)

Correlation energy �E = E � EHF as a function of g:
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Correlation energy �E = E � EHF as a function of g:
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Correlaqon energy                                      as a funcqon 
of interacqon strength (g): 

Spectroscopic
function for
different dimensions
of the model space
(g = 0.6).
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Spectroscopic funcqon for different 
dimensions of the model space (D):

S. Brolli, CB, Vigezzi, 
in preparation



SCGF computations of infinite matter
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Nuclear Density Functional from Ab Initio Theory

DFT is in principle exact – but the energy 

density functional (EDF) is not known

For nuclear physics this is even more 

demanding: need to link the EDF to 

theories rooted in QCD!

Machine-learn DFT functional  
on the nuclear equation of state Benchmark in finite systems

Jacob’s ladder 

+ approximate GA
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We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and
advocate the need for a methodical approach that is free from ad hoc assumptions. The equations of state (EoSs)
of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
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I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the
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latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for
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ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
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duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
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latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
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FIG. 1. Dots: SNM and PNM EoS computed with the NNLOsat

interaction and the SCGF method. Dashed: model EoS (2,3,4,5,6)
(see text).

saturate; in fact, AV4′ alone predicts no saturation before 0.50
fm−3 [97]. The smallest validation error (MSE = 0.06 MeV2)
is achieved by the (2,5,6) model, which is shown in Fig. 2
together with the ab initio EoS.

To sum up, parametrizing the nuclear EoS as a polynomial
of the Fermi momentum has proved an effective ansatz. Two
optimal models have been found, namely, (2,3,4,5,6) for the
NNLOsat EoS and (2,5,6) for the AV4′ + UIXc EoS. The
parameters of these models are reported in Table III.

B. Predictions of the LDA EDFs in finite nuclei

Two LDA EDFs are derived from the (2,3,4,5,6) and (2,5,6)
parametrizations of the NNLOsat- and the AV4′ + UIXc-based
EoS (Sec. IV A). These are then applied to closed-subshell
nuclei and compared to experimental values, taken from
Refs. [98,99], and to ab initio results. Full ab initio calcula-
tions are available for a set of nuclei up to 54Ca for NNLOsat

TABLE I. Energy per particle e computed with SCGF and the
NNLOsat interaction at several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −7.94 5.22
0.08 −11.78 6.71
0.12 −13.98 8.51
0.16 −14.62 11.23
0.20 −13.68 14.99
0.22 −12.61 17.24
0.24 −11.12 19.71
0.26 −9.22 22.40
0.28 −6.91 25.29
0.32 −1.00 31.58

TABLE II. Energy per particle e and standard errors (in paren-
theses) computed with AFDMC and the AV4′ + UIXc interaction at
several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −8.17 (1) 7.062 (5)
0.08 −13.60 (1) 11.075 (6)
0.12 −17.48 (1) 15.278 (8)
0.16 −20.74 (2) 20.20 (1)
0.20 −22.80 (1) 26.23 (1)
0.22 −23.42 (2) 29.66 (2)
0.24 −23.68 (3) 33.44 (3)
0.26 −23.58 (3) 37.47 (2)
0.28 −23.15 (3) 42.12 (3)
0.32 −21.10 (3) 52.26 (5)
0.36 −17.0 (1) 63.91 (6)
0.40 −12.21 (8) 77.51 (7)

and 90Zr for AV4′ + UIXc. Moreover, the NNLOsat densities
for 90Zr are available.

The discrepancy between theory and experiment for ener-
gies per nucleon (top) and charge radii (bottom) are shown in
Fig. 3 for NNLOsat and the (2,3,4,5,6) EDF, as well as the
GA-E and GA-r EDFs introduced later on (Sec. IV C). On
the one hand, we can appreciate that NNLOsat predictions are
very close to experiment. On the other hand, the LDA EDF, al-
though less precise, exhibits interesting trends, since it enables
one to reproduce heavier nuclei, especially from 90Zr on, in
a realistic way, with deviations smaller than 1 MeV/nucleon
and 0.05 fm for the energies and radii, respectively. This is
quite remarkable, as the LDA EDF incorporates only infor-
mation on uniform matter. Also, it is unsurprising that light
systems are less amenable to a local density treatment, since

FIG. 2. Dots: SNM and PNM EoS computed with the AV4′ +
UIXc interaction and the AFDMC method. The AFDMC statistical
error bars are shown. Dashed: model EoS (2,5,6) (see text).
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the AFDMC, the spin-isospin degrees of freedom are de-
scribed by single-particle spinors, the amplitudes of which are
sampled using Monte Carlo techniques based on the Hubbard-
Stratonovich transformation, reducing the computational cost
from exponential to polynomial in A. However, some of
the contributions characterizing fully realistic nuclear forces,
such as isospin-dependent spin-orbit contributions, cannot be
treated in this way, yet. Hence, the AFDMC is limited to
somewhat simplified interactions, but it can be applied to
compute larger nuclei and nuclear matter.

The starting point of AFDMC calculations is a trial wave
function, which is commonly expressed as the product of a
long-range component |!〉 and of two- plus three-body corre-
lations:

|"T 〉 =
∏

i< j

f c
i j

∏

i< j<k

f c
i jk|!〉. (7)

In the above equation, we assumed the correlations to be spin-
isospin independent. This simplified ansatz, consistent with
Refs. [58,81,82], is justified by the fact that the AV4′ + UIXc
Hamiltonian does not contain tensor or spin-orbit terms.

In finite nuclei, |!〉 is constructed by coupling different
Slater determinants of single-particle orbitals in the |nl jmj〉
basis so as to reproduce the total angular momentum, total
isospin, and parity of the nuclear state of interest [6]. On the
other hand, infinite nuclear matter is modeled by simulating
a finite number of nucleons on which periodic-box boundary
conditions are imposed [83]. In this case, the single-particle
states are plane waves with quantized wave numbers:

k = 2π

L
(nx, ny, nz ) ni = 0,±1,±2, . . . , (8)

where L is the size of the box and the shell closure condition
must be met in order to satisfy translational invariance. As
a consequence, the number of nucleons in a box must be
equal to the momentum space “magic numbers” (1, 7, 19, 27,
33, . . . ) times the number of spin/isospin states: 2 for PNM,
4 for SNM. The equations of state of nuclear matter discussed
in Sec. IV A are computed with 66 neutrons (PNM) and
76 nucleons (SNM) in a periodic box.

The AFDMC method has no difficulty in dealing with
“stiff” forces that can generate wave functions with high-
momentum components. This is in contrast with remarkably
successful many-body approaches that rely on a basis ex-
pansion [11,12,84,85], which need relatively “soft” forces to
obtain converged calculations. However, like standard dif-
fusion Monte Carlo algorithms, the AFDMC suffers from
the fermion sign problem, which results in large statistical
errors that grow exponentially with τ . To control it, we
employ the constrained-path approximation, as described in
Refs. [6,69,86]. This scheme is believed to be accurate for
Hamiltonians that do not include tensor or spin-orbit opera-
tors, as is the case for the AV4′ + UIXc potential. Expectation
values of operators Ô that do not commute with the Hamilto-
nian are evaluated by means of the mixed estimator [4]

〈Ô(τ )〉 ≈ 2
〈"T |Ô|"(τ )〉
〈"T |"(τ )〉

− 〈"T |Ô|"T 〉
〈"T |"T 〉

. (9)

Also, charge radii are estimated from the proton radii with the
formula r2

ch = r2
p + (0.8 fm)2.

III. METHOD

A. Nuclear EDFs

The general structure of a nonrelativistic nuclear EDF is
described in depth in Refs. [27,28,87]. In this section, the
discussion is limited to even-even nuclei and to quasilocal
EDFs, i.e., functionals that can be expressed as the volume
integral of an energy density E (r) which is a function of
the local densities [28] and their gradients. Nonlocal EDFs
such as Gogny ones are not treated. Moreover, for simplicity
pairing terms are neglected. Applications shall be limited to
magic nuclei and to some closed-subshell ones.

Under these assumptions, the total energy is a functional
of the time-even proton and neutron densities [number density
ρq(r), kinetic density τq(r), and spin-orbit density Jq(r), with
q = n, p] [28,35] and reads

E =
∫

dr E (r) = Ekin + Epot + ECoul. (10)

The kinetic energy term is given by [35]

Ekin =
∫

dr Ekin(r) =
∫

dr
h̄2

2m
τ0(r). (11)

The Coulomb contribution ECoul is treated in the standard
local Slater approximation [88]. The most general form of the
potential term

Epot =
∫

dr Epot(r) (12)

is reported in Eqs. (48) and (49) of Ref. [28], and will be
outlined in the next section. Neutron and proton densities have
been recoupled into the isoscalar (t = 0) and isovector (t = 1)
channels: isoscalar densities are total densities (e.g., ρ0 =
ρn + ρp), while isovector densities account for proton-neutron
differences (ρ1 = ρn − ρp). The coefficients of the various
terms are all, in principle, functions of the density, although
in practice most of them are set to a constant value [27].
The mean field equations are then derived by relating the
densities to the single-particle orbitals φ j (r) and applying the
variational principle [87]:

[
−∇ · h̄2

2m∗
q (r)

∇ + Uq(r) + UCoul(r)δq,p (13)

+ Wq(r) · (−i)(∇ × σ )
]
φ j (r) = ε jφ j (r) (14)

where

Uq = δE
δρq

,
h̄2

2m∗
q (r)

= δE
δτq

, Wq = δE
δJq

, (15)

and m∗
q (r), Uq(r), and Wq(r) are called effective mass, mean

field, and spin-orbit potential, respectively.
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ #= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1

C&
t ρt&ρt

−W0

2

(

ρ∇ · J +
∑

q

ρq∇ · Jq

)]

. (29)

Three parameters, C&
0 , C&

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk

q (r) + U surf
q (r), where

Wq(r) = δEsurf

δJ(r)
= W0

2
(∇ρ + ∇ρq), (30)

U surf
q (r) = δEsurf

δρq

= 2C&
0 &ρ0 + 2C&

1 &ρ1τz − W0

2
(∇ · J + ∇ · Jq)

(31)

and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs

σE
(
C&

0 ,C&
1 ,W0

)
=

√∑nE
k=1

(
E th

k − E exp
k

)2

nE
, (32a)

σrch

(
C&

0 ,C&
1 ,W0

)
=

√∑nr
k=1

(
rth

k − rexp
k

)2

nr
(32b)

are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
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q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ #= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1

C&
t ρt&ρt

−W0

2

(

ρ∇ · J +
∑

q
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)]

. (29)
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1 , and W0, are introduced and are
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used EDFs. The mean field equations (13) hold, with m∗ = m
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σE
(
C&

0 ,C&
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E th
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nE
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=
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48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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C. Construction of the EDFs
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Three parameters, C&
0 , C&
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(∇ρ + ∇ρq), (30)

U surf
q (r) = δEsurf

δρq

= 2C&
0 &ρ0 + 2C&

1 &ρ1τz − W0

2
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=
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(
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k

)2

nr
(32b)
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The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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at the uniform matter values ⇢(z) = ⇢0, ⌧(z) = 3
5⇢0q

2
F

and J(z) = 0 and the fields are determined accordingly.
The s.c. procedure is stopped if two conditions are

met: the energies between iterations i and i � 1 and, at
the same time, the two formulas (22) and (21) for the
energy at iteration i, agree within a chosen tolerance.
Thresholds of the order of 0.1-1 keV per nucleon can be
obtained usually in few tens of iterations. Combining
linear mixing and two convergence conditions makes our
approach rather robust.

III. THEORY OF THE STATIC RESPONSE

The theory of the response of homogeneous matter to
an external static perturbation is summarized. In-depth
discussions can be found in Refs. [29, 47, 48].

Consider a system with uniform g.s. density ⇢0, de-
scribed either by a Hamiltonian Ĥ or an EDF. A static
potential v(x) coupled to the total density is then turned
on. v(x) is periodic so as to respect the PBCs. The den-
sity and energy of the g.s. of the perturbed system are
called ⇢v(x) and E[v], respectively. If the external po-
tential is weak enough, its e↵ect can be treated pertur-
batively (see e.g. Refs. [43, 47]). The density fluctuation
induced by v(x), in particular, is linear in the external
potential and is written as follows:

�⇢(x) = ⇢v(x)� ⇢0 =

Z
dx0

�(x,x0)v(x0). (24)

The static response function �(x,x0) has been introduced
and we stress that it depends exclusively on the proper-
ties of the unperturbed system. The response of homo-
geneous matter, in particular, is a function only of x�x0,
i.e �(x,x0) = �(x� x0).

While a generic periodic function v(x) is a superposi-
tion of plane waves, in the following we consider without
loss of generality a monochromatic potential oscillating
at a given wave number q, namely

v(x) = vqe
iq·x + c.c. = 2vq cos (q · x) . (25)

Thus the density fluctuation induced by the perturbation
(25) is monochromatic too and is given by

�⇢(x) = 2⇢q cos (q · x) , (26)

where the amplitude ⇢q is linear in vq, i.e.

⇢q = �(q)vq (27)

and �(q) is the Fourier transform of �(x,x0), see Eq.
(B6). The energy of the perturbed system, instead, is
quadratic in the external potential. In App. B, we derive
that the energy per particle is given by [29]

�ev = ev � e0 =
�(q)

⇢0
v
2
q . (28)

The formalism we have outlined is valid both in the
TL and in finite systems, and both for DFT and for
Hamiltonian-based methods. The question is now how
to compute the response function in practice. For gener-
alized Skyrme EDFs [23] and Gogny and Nakada EDFs
[24], for example, the response in the TL can be deter-
mined analytically (App. C). An alternative for study-
ing �(q) is provided by exploiting Eqs. (27) or (28).
The strategy to determine �(q) for a uniform system at
a given density ⇢0, and with a given particle number,
is the following. For a given (quantized) momentum q,
multiple calculations of the g.s. of the perturbed system
are performed for di↵erent values of the strength vq of
the external potential (25). Then �(q) can be extracted
from the amplitude of the density fluctuations [Eq. (27)]
or from the energies [Eq. (28)] as a function of vq, for
su�ciently small vq. This strategy has been applied in
several contexts, e.g. Refs. [26, 29, 49, 50], and pro-
vides a relatively straightforward way to determine the
static response function numerically. We will interpolate
energies using the more general formula [26, 49]

�ev = ev � e0 =
�(q)

⇢0
v
2
q + C4v

4
q (29)

which takes into account higher-order contributions.
Second-order perturbation theory, or equivalently the

spectral representation of the dynamical density response
�(q,!), can be employed to derive a formula that relates
�(q) to the excited states of the homogeneous system
[43, 47]. For the case of the spin- and isospin-saturated
A-fermion FG, the response �0,A at zero temperature is
given by [47, 49]

�0,A(q) = �4mg

~2⌦
X

k occ

1

(k+ q)2 � k2
, (30)

where the sum extends over the occupied momentum
states and terms with vanishing denominator are can be
safely neglected. Consistently with the assumptions of
Sec. II, we write k = 2⇡

L n and take q quantized and
parallel to the z direction, i.e. q = qẑ = 2⇡

L p ẑ, with p

integer. Then Eq. (30) is expressed as

�0,A(q) = � mg

L⇡2~2
X

n occ

1

p2 + 2pnz
. (31)

This formula is straightforward to evaluate: we deter-
mine the occupied states of the A-particle FG g.s. once
and then, for each value of q, we simply perform a
sum over these states. In the TL, nk = ✓(qF � k),
1
⌦

P
k �!

R
dk

(2⇡)3 [43] and the static response becomes

the well-known Lindhard function at zero-frequency [51]

�0(q) = �g
mqF

2(~⇡)2 f
✓

q

2qF

◆
(32)

f(k) =
1

2

✓
1 +

1� k
2

2k
log

����
1 + k

1� k

����

◆
. (33)
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https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/
Chapter11-programs/Inf_Matter. We will use the C++ programming language and
will refer to this code for describing the technical details of the implementation.
We then show results based on the Minnesota nuclear potential from [47]. This
is a very simplified model of the nuclear interaction that allows for an easy
implementation. On the other hand, it still retains some physical properties of
the nuclear Hamiltonian that will allow us to discuss the basic features of the
spectral function of nucleonic matter (and of infinite fermionic systems in general).
The reader interested in these physics aspects could refer directly to Sect. 11.4.2.

11.4.1 Computational Details for ADC(n)

The first fundamental step to set up a SCGF computation is the choice of the model
space. For infinite matter, translational invariance imposes that the Dyson equation
is diagonal in momentum and therefore it becomes much easier to solve the problem
in momentum space. However, there remain two possible choices for how to encode
single particle degrees of freedom. The first one is to subdivide the infinite space in
boxes of finite size and to impose periodic boundary conditions (see also Chap. 8).
In this way, the number of fermions included in each box is finite and determined by
the particle density of the system. The resulting model space is naturally expressed
by a set of discretized single particle states and one solves the working equations in
the form of Eqs. (11.38), (11.39) and (11.48). This path requires the same technical
steps needed to calculate finite systems in a box. Numerical results then need to
be converged with respect to the truncation of the k-space (and, for an infinite
system, with respect to the number of nucleons inside each periodic box). We will
follow this approach for the present computational project. The other approach is to
retain the full momentum space and write the SCGF equations already in the full
thermodynamic limit. This choice is best suited to solve the Dyson equation at finite
temperatures and in a full SCGF fashion and will be discussed further in Sect. 11.5.

Construction of the Model Space For simplicity, we assume a total number A of
nucleons in each (cubic) periodic box. For boxes of length L, the density and the
Fermi momentum are expressed, respectively as („=1):

! D A
L

and pF D 3

s
6"2!

#d
; (11.54)

where the degeneracy #d is twice the number of different spin- 1
2
fermions and the

basis states are defined by the cartesian quantum numbers nx, ny, nz= 0, 1, 2. . .with
momentum

p D 2"

L

0

@
nx
ny
nz

1

A : (11.55)

A=66,        2+3 NF (NNLOsat)
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We work with a system of A non-relativistic fermions interacting by means of
two-body and three-body interactions. We divide the Hamiltonian into two parts,
bH D bH0 C bH1. The unperturbed term, bH0 D bT C bU, is given by the sum
of the kinetic term and an auxiliary one-body operator bU. Its choice defines the
reference state, j˚A

0 i, and the corresponding unperturbed propagator g.0/.!/ that
are the starting point for the perturbative expansion.1 The perturbative term is then
bH1 D !bU CbV C bW, where bV denotes the two-body interaction operator and bW is
the three-body interaction. In a second-quantized framework, the full Hamiltonian
reads:

bH D
X

˛

"0˛ a
!
˛a˛ !

X

˛ˇ

U˛ˇ a!˛aˇ C
1

4

X

˛"
ˇı

V˛";ˇı a!˛a
!
"aıaˇ

C 1

36

X

˛"#
ˇı$

W˛"#;ˇı$ a!˛a
!
"a
!
#a$aıaˇ : (11.13)

In Eq. (11.13) we continue to use Greek indices ˛,ˇ," ,. . . to label the single particle
basis that defines the model space. But we make the additional assumption that
these are the same states which diagonalize the unperturbed Hamiltonian, bH0, with
eigenvalues "0˛. This choice is made in most applications of perturbation theory but
it is not strictly necessary here and it will not affect our discussion in the following
sections. The matrix elements of the one-body operator bU are given by U˛ˇ . And
we work with properly antisymmetrized matrix elements of the two-body and three-
body forces, V˛";ˇı andW˛"#;ˇı$ .

In time representation, the many-body Green’s functions are defined as the
expectation value of time-ordered products of annihilation and creation operators
in the Heisenberg picture. This is shown by Eq. (11.1) for the single particle
propagator. Every Green’s function can be expanded in a perturbation series in
powers of bH1. For the one-body propagator this reads [22, 35]:

g˛ˇ.t˛ ! tˇ/ D .!i/
1X

nD0
.!i/n

1

nŠ

Z
dt1 : : :

Z
dtn

"h˚A
0 jT ŒbHI

1.t1/ : : :bHI
1.tn/a

I
˛.t˛/a

I
ˇ

!
.tˇ/&j˚A

0 iconn ; (11.14)

where bHI
1.t/, a

I
˛.t/ and aIˇ

!
.t/ are now intended as operators in the interaction

picture with respect to H0. The subscript “conn” implies that only connected
diagrams have to be considered when performing the Wick contractions of the
time-ordered product T . Each Wick contraction generates an uncorrelated single
particle propagator, g.0/.!/, which is associated with the system governed by the

1A typical choice in nuclear physics would be a Slater determinant such as the solution of the
Hartree-Fock problem or a set of single-particle harmonic oscillator wave functions.
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Solution

Upon performing the four frequency integrals, one obtains:
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11.3 The Algebraic Diagrammatic Construction Method

The most general form of the irreducible self-energy is given by Eq. (11.15).
The ˙.1/ is defined by the mean-field diagrams of Fig. 11.3a and Eq. (11.17a),
while ė.!/ has a Lehmann representation as seen in the examples of Eqs. (11.25)
and (11.26). Similarly to the case of a propagator, the pole structure of the energy-
dependent part is dictated by the principle of causality with the correct boundary
conditions coded by the ˙i% terms in the denominators. This implies a dispersion
relation that can link the real and imaginary parts of the self-energy [22, 26].
Correspondingly, the direct coupling of single particle orbits to ISCs (of 2p1h and
2h1p character or more complex) imposes the separable structure of the residues. In
this section we consider the case of a finite system, for which it is useful to use a
discretized single particle basis f˛g as the model space. From now on we will use
the Einstein convention that repeated indices (n, k, ˛. . . ) are summed over even if
not explicitly stated. Thus, the above constraints impose the following analytical
form for the self-energy operator:
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where, here and in the following, ! and ˙i% are to be intended as multiplication
operators (that is, with matrix elements Œ!C i%'s;s0 D .!C i%/ıs;s0) and the fraction
means a matrix inversion. In Eq. (11.27), theE> and E< are the unperturbed energies
for the forward and backward ISCs and r and s are collective indices that label sets of
configurations beyond single particle structure. Specifically, r is for particle addition
and will label 2p1h, 3p2h, 4p3h, . . . states, in the general case. Likewise, s is for
particle removal and we will use it to label 2h1p states (or higher configurations).
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The most general form of the irreducible self-energy is given by Eq. (11.15).
The ˙.1/ is defined by the mean-field diagrams of Fig. 11.3a and Eq. (11.17a),
while ė.!/ has a Lehmann representation as seen in the examples of Eqs. (11.25)
and (11.26). Similarly to the case of a propagator, the pole structure of the energy-
dependent part is dictated by the principle of causality with the correct boundary
conditions coded by the ˙i% terms in the denominators. This implies a dispersion
relation that can link the real and imaginary parts of the self-energy [22, 26].
Correspondingly, the direct coupling of single particle orbits to ISCs (of 2p1h and
2h1p character or more complex) imposes the separable structure of the residues. In
this section we consider the case of a finite system, for which it is useful to use a
discretized single particle basis f˛g as the model space. From now on we will use
the Einstein convention that repeated indices (n, k, ˛. . . ) are summed over even if
not explicitly stated. Thus, the above constraints impose the following analytical
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where, here and in the following, ! and ˙i% are to be intended as multiplication
operators (that is, with matrix elements Œ!C i%'s;s0 D .!C i%/ıs;s0) and the fraction
means a matrix inversion. In Eq. (11.27), theE> and E< are the unperturbed energies
for the forward and backward ISCs and r and s are collective indices that label sets of
configurations beyond single particle structure. Specifically, r is for particle addition
and will label 2p1h, 3p2h, 4p3h, . . . states, in the general case. Likewise, s is for
particle removal and we will use it to label 2h1p states (or higher configurations).
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Figure 4.4: Schematic workflow of a SCGF calculation. The first step is always to construct the s.p. basis and determine
the corresponding HF reference propagator and 2p1h/2h1p configurations. Then, the Dyson matrix is constructed using
the reference propagator, Lanczos-reduced and stored. Afterward, the Dyson eigenvalue problem (4.51) is solved for the
first time. The dressed propagator g(!) is thus obtained. Then, the Fermi level is adjusted to conserve the particle number,
and the total energy, the density matrix and the relevant one-body observables are computed. The static self-energy ⌃(1)

is evaluated using g(!) and inserted in the Dyson matrix (while the dynamical self-energy is kept unchanged). This is the
content of the sc0 loop, which is repeated until the total energy is converged from one iteration to the next within a chosen
tolerance. Typically, about 10-15 iterations are sufficient for the sc0 loop. Once a sc0 cycle has converged, a new reference
state, the so-called OpRS, is determined to approximate the dressed propagator. The OpRS GF in general is characterized
by s.p. energies and amplitudes somewhat different from those of the HF propagator. Then, the whole Dyson matrix is
built again from scratch using the new (uncorrelated) reference state, and the sc0 loop is started again. Convergence is
typically achieved within 10 OpRS cycles (and often 5 iterations are enough).

fixed number, but rather an operator Âi, with i denoting the different fermion species in the system. Thus, the
number of particles Ai can be conserved only on average,
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by demanding
D
Âi

E
= Ai.

In [84], it has been shown (to second order) that ADC(n) is a so-called conserving approximation of the
self-energy. That is, it was shown by Baym and Kadanoff [212, 213] that, if the self-energy can be derived
from a certain functional �[g] of the dressed 1B propagator, then all basic conservation laws are satisfied by
the corresponding many-body method [214, 215]. This is an important and non-trivial property that, however,
is rigorously verified only if the observables are evaluated on the exact Green’s function. However, since, as
discussed above, only approximations to the true self-consistent solution of the Dyson equation are attainable
in practical cases, a slight violation of the particle number is to be expected, usually in the range of 2-3%.
In contrast, Gorkov-SCGF [26, 84] does not suffer from this issue, as the particle number is fixed exactly on
average in this framework. This is one of the main motivations for introducing Gorkov corrections, as we
describe in Sec. 4.3.

4.3 First-order Gorkov corrections

In this work, we do not implement a full Gorkov approach for infinite matter. However, we do study an
approximation in which first-order Gorkov corrections are introduced on top of Dyson-ADC (Sec. 4.2).
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.
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Corrections & amendments 

Author Correction: Ab initio predictions link the neutron  
skin of 208Pb to nuclear forces

Baishan Hu    , Weiguang Jiang    , Takayuki Miyagi    , Zhonghao Sun, 
Andreas Ekström, Christian Forssén    , Gaute Hagen    , Jason D. Holt    , 
Thomas Papenbrock    , S. Ragnar Stroberg & Ian Vernon

The initially published version of the paper contained an error. Matrix elements in the 
normal-ordering procedure of the three-nucleon force were computed incorrectly, which 
influences results presented in Fig. 3a. The figure has been corrected, and the Source Data file 
for Fig. 3 has been replaced. These changes have no effect on the conclusions drawn in the article 
regarding the neutron skin thickness of 208Pb and other properties of finite nuclei.

The fourth sentence in the Discussion now starts “We find that both Rskin (208Pb) = 0.14–0.20 fm  
and the slope parameter L = 38–69 MeV are strongly correlated with scattering in the 1S0 partial 
wave for laboratory energies around 50 MeV”, replacing the original wording “We find that both 
Rskin (208Pb) = 0.14–0.20 fm and the slope parameter L = 37–66 MeV are strongly correlated with 
scattering in the 1S0 partial wave for laboratory energies around 50 MeV”.

The error also affects results presented in Methods, Extended Data Table 2 and Extended 
Data Figs. 6–8.

The final two sentences in the third paragraph of the “Bayesian machine learning error 
model” section (in Methods) now read “In this work, we find ˨»

UGF

Ҳ ŠМũũ and lPNM = 0.88 fm−1 for 
pure neutron matter and ˨»

[GF

Ҳ šМŦŦ  and â
[GF

Ҳ ŠМŤť  fm−1 for symmetric nuclear matter.  
This leads to Q = 0.41 when estimating the model errors for E/A in 48Ca and 208Pb”, replacing  
the original wording “In this work, we find ˨»

UGF

Ҳ šМŠŠ and â
UGF

Ҳ ŠМũŢ fm−1 for pure neutron 
matter and ˨»

[GF

Ҳ šМťť and lSNM = 0.48 fm−1 for symmetric nuclear matter.”
Furthermore, the fourth sentence after Eq. (14) that reads “The correlation lengths learned 

from the training data are lme,PNM = 0.83 fm−1 for pure neutron matter and lme,SNM = 0.39 fm−1  
for symmetric nuclear matter.” was changed from “The correlation lengths learned from  
the training data are lme,PNM = 0.81 fm−1 for pure neutron matter and lme,SNM = 0.34 fm−1 for  
symmetric nuclear matter.”

Finally, the last sentence of the same paragraph now starts with “Here we simply used ŠМŨţ fm−1  
(0.39 fm−1) as the correlation length …” which was changed from the original text “Here we 
simply used ŠМŨš fm−1 (0.34 fm−1) as the correlation length …”.

All results that involve predictions for properties of infinite nuclear matter have been cor-
rected. Predictions for properties of finite nuclei, including the thickness of the neutron skin, are 
not affected. The original and corrected versions of Fig. 3, Extended Data Table 2 and Extended 
Data Figs. 6, 7b and 8a are shown in the Supplementary Information for this amendment, and 
the errors have been corrected in the HTML and PDF versions of the article.

Supplementary Information is available in the online version of this amendment.

Additional information
Supplementary information The online version contains supplementary material available at  
https://doi.org/10.1038/s41567-023-02324-9.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not included in the article’s 
Creative Commons license and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Correction to: Nature Physics  
https://doi.org/10.1038/s41567-022-01715-8, 
published online 22 August 2022.

https://doi.org/10.1038/s41567-023-02324-9

Published online: 20 November 2023

 Check for updates

 

 

Original Extended Data Fig. 6 

 

Revised Extended Data Fig. 6 
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 - Bug in ORNL CCM codes: 

 - Dyson-ADC(3) instability at small p-h gaps and fully resolved in 
Gorkov(1) + ADC(3) 

 - Methods now agree — new NNLOsat saturaqon!
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!Optical potentials: hold promise for solving structure reaction inconsistency (but still difficult) 

!Diagrammatic Monte Carlo is a promising method to go forward 

!SCGF Corkov/ASC(3) computations in nuclear matter  in the way. 

Systematic improvement of Nuclear DFT from ab initio in nuclear matter is promising

M. Vorabbi, P. Arthuis

P. Navrártil

V. Somà, T. Duguet, A. Scalesi

C. Giusti, P. Finelli

E. Vigezzi, S. Brolli

A. Idini

And thanks to my collaborators (over the years…):



Backup slides



Diagrammatic Monte Carlo: normalization

where the normalizaqon             is unknown but it can be esqmated. 

The Markov chain must have the correct equilibrium distribuqon                 : If the Markov chain has the correct equilibrium distribution w
!

↵�
(C):

⌃?

↵�
(!) = Z!

↵�

"
lim
n!1

1

n

nX

i=1

e
i arg[D!

↵�(Ci)]

Wo(N)
1Ti2S⌃?

#
,

Z!

↵�
is unknown but it can be estimated.

Stefano Brolli (Unimi) Master’s Degree Thesis 19 June 2023 8 / 29

If the Markov chain has the correct equilibrium distribution w
!

↵�
(C):

⌃?

↵�
(!) = Z!

↵�

"
lim
n!1

1

n

nX

i=1

e
i arg[D!

↵�(Ci)]

Wo(N)
1Ti2S⌃?

#
,

Z!

↵�
is unknown but it can be estimated.

Stefano Brolli (Unimi) Master’s Degree Thesis 19 June 2023 8 / 29

If the Markov chain has the correct equilibrium distribution w
!

↵�
(C):

⌃?

↵�
(!) = Z!

↵�

"
lim
n!1

1

n

nX

i=1

e
i arg[D!

↵�(Ci)]

Wo(N)
1Ti2S⌃?

#
,

Z!

↵�
is unknown but it can be estimated.

Stefano Brolli (Unimi) Master’s Degree Thesis 19 June 2023 8 / 29

Estimating Z!

↵�

We turn propagators that close on themselves into zigzag lines with an
arbitrary value

e
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k is an arbitrary constant that can be used to optimize the convergence.
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We turn propagators that close on themselves into zigzag lines with an arbitrary value  

with k an arbitrary constant that can be used to opqmize the convergence. 



Diagrammatic Monte Carlo: normalization

 These diagrams belong to           but not to 

 They are easy to integrate and to simulate with 
the Monte Carlo method ↵
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method.
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Define the normalisaqon sector            to be made of both these diagrams:

has weight:
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The expected number of qmes the normalizaqon 
sector is visited (     ) gives the normalizaqon        :  

Then, we get the fundamental equaqon of DiagMC:

We define the set of normalization diagrams SN as the set made of these
two diagrams.
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The expected number of times the normalization sector is visited (N ) gives
the normalization Z!
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Combined Gkv-ADC(1) + Dys ADC(3)



ADC(3) computations for infinite matter

PBC sp-TABC



Validated by charge distributions and neutron quasiparticle spectra:

- 34Si is unstable, charge distribution is still unknown 

- Suggested central depletion from mean-field 
simulations 

- Ab-initio theory confirms predictions 

- Other theoretical and experimental evidence: 
Phys. Rev. C 79, 034318 (2009), 
Nature Physics 13, 152–156 (2017).

Duguet, Somà, Lecuse, CB, Navrátil, 
Phys.Rev. C95, 034319 (2017)

Bubble nuclei...   34Si prediction



Reach of ab initio methods across the nuclear chart

H. Hergert, Frontiers in Phys 8, 379 (2020) 
L. Coraggio, S. Pastore, CB, Frontiers in Phys 8, 626976 (2021)

P. Arthuis 2020 
PRL125, 182501   

Extension beyond few-nucleons thanks to: 

• Soft (nearly perturbative) effective nuclear forces 

• Diagrammatic many-body approaches

• 283 stable isotopes 
• ≈3,000 are known 
• ≈7,000 predicted to exist
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Wave Function-Based Methods

Early years

Open challenges: 

• Accuracy (better theory of nuclear forces) 

• Mass number limit (optimised model spaces) 

• Precision & scattering (high-order diag. resummations)

Legnaro Natl’ Lab Mid Term Plan; Eur. Phys. J. Plus 138, 709 (2023) 


