Electric dipole polarizability in medium-mass nuclei

FRANCESCA BONAITI, JGU MAINZ
PAINT WORKSHOP @ TRIUMF, VANCOUVER
FEBRUARY 28, 2024

In collaboration with:
Sonia Bacca (JGU Mainz)
Gaute Hagen (ORNL)
Gustav R. Jansen (ORNL)
Thomas Papenbrock
(ORNL/UTK)

Extreme matter in neutron stars

A. Watts et al, RMP 88, 021001 (2016).

Neutron matter equation of state (EOS)

Infinite nuclear matter EOS:

$$
\begin{gathered}
\mathcal{E}(\rho, \alpha)=\mathcal{E}_{\mathrm{SNM}}(\rho)+\alpha^{2} \mathcal{S}(\rho)+\mathcal{O}\left(\alpha^{4}\right) \\
\rho=\left(\rho_{n}+\rho_{p}\right) \quad \alpha=\left(\rho_{n}-\rho_{p}\right) / \rho
\end{gathered}
$$

where the symmetry energy is:

$$
\mathcal{S}(\rho)=J+L \frac{\left(\rho-\rho_{0}\right)}{3 \rho_{0}}+\ldots .
$$

symmetry energy
at saturation density
slope parameter, related to pressure of pure neutron matter at saturation density
S. Huth et al, PRC 103, 025803 (2021).

How to constrain L?

Neutron-skin thickness

B. Hu et al, Nat. Phys. 18, 1196-1200 (2022).

How to constrain L?

Neutron-skin thickness

B. Hu et al, Nat. Phys. 18, 1196-1200 (2022).

Electric dipole polarizability

Data from X. Roca-Maza et al, PRC 88, 024316 (2013), B. Hu et al, Nat. Phys. 18, 1196-1200 (2022).

Nuclear response functions

$$
\left.R(\omega)=\sum_{f}\left|\left\langle\Psi_{f}\right| \Theta\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega\right)
$$

Coupled-cluster theory

\square Starting point: Hartree-Fock reference state on the HO basis $\left|\Phi_{0}\right\rangle$
\square Add correlations via:

$$
e^{-T} H e^{T}\left|\Phi_{0}\right\rangle=\bar{H}\left|\Phi_{0}\right\rangle=E_{0}\left|\Phi_{0}\right\rangle
$$

with

$$
T=\sum t_{i}^{a} a_{a}^{\dagger} a_{i}+\sum t_{i j}^{a b} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}+\sum t_{i j k}^{a b c} a_{a}^{\dagger} a_{b}^{\dagger} a_{c}^{\dagger} a_{k} a_{j} a_{i}+\ldots
$$

\rightarrow coefficients from coupled-cluster equations

Coupled-cluster theory

\square Starting point: Hartree-Fock reference state on the HO basis $\left|\Phi_{0}\right\rangle$
\square Add correlations via:

$$
e^{-T} H e^{T}\left|\Phi_{0}\right\rangle=\bar{H}\left|\Phi_{0}\right\rangle=E_{0}\left|\Phi_{0}\right\rangle
$$

Similarity-transformed
Hamiltonian (non-Hermitian)
with

$$
T=\sum t_{i}^{a} a_{a}^{\dagger} a_{i}+\sum t_{i j}^{a b} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}+\sum t_{i j k}^{a b c} a_{a}^{\dagger} a_{b}^{\dagger} a_{c}^{\dagger} a_{k} a_{j} a_{i}+\ldots
$$

Coupled-cluster theory

\square Starting point: Hartree-Fock reference state on the HO basis $\left|\Phi_{0}\right\rangle$
\square Add correlations via:

$$
e^{-T} H e^{T}\left|\Phi_{0}\right\rangle=\bar{H}\left|\Phi_{0}\right\rangle=E_{0}\left|\Phi_{0}\right\rangle
$$

Similarity-transformed
Hamiltonian (non-Hermitian)
with

From bound to dipole-excited states
 $$
\left.R(\omega)=\mathcal{f}_{f}\left|\left\langle\Psi_{f}\right| \Theta\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega\right)
$$

From bound to dipole-excited states

$$
\begin{gathered}
\left.R(\omega)=\mathcal{F}_{f}\left|\left\langle\Psi_{f}\right| \theta\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega\right) \\
L(\sigma, \Gamma)=\frac{\Gamma}{\pi} \int d \omega \frac{R(\omega)}{(\omega-\sigma)^{2}+\Gamma^{2}}=\frac{\Gamma}{\pi}\left\langle\Psi_{L} \mid \Psi_{R}\right\rangle
\end{gathered}
$$

From bound to dipole-excited states

$$
\begin{gathered}
\left.R(\omega)=\sum_{f}\left|\left\langle\Psi_{f}\right| \Theta\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega\right) \\
L(\sigma, \Gamma)=\frac{\Gamma}{\pi} \int d \omega \frac{R(\omega)}{(\omega-\sigma)^{2}+\Gamma^{2}}=\frac{\Gamma}{\pi}\left\langle\Psi_{L} \mid \Psi_{R}\right\rangle{ }_{c}^{\begin{array}{c}
\text { Lorentz Integra } \\
\text { Transform (IIT) }
\end{array}} \\
\quad\left(\bar{H}-E_{0}-\sigma-i \Gamma\right)\left|\Psi_{R}\right\rangle=\bar{\Theta}\left|\Phi_{0}\right\rangle \quad \begin{array}{c}
\text { cc equation of motion } \\
\text { with a source }
\end{array}
\end{gathered}
$$

From bound to dipole-excited states

$$
\begin{gathered}
\left.R(\omega)=\sum_{f}\left|\left\langle\Psi_{f}\right| \Theta\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega\right) \\
L(\sigma, \Gamma)=\frac{\Gamma}{\pi} \int d \omega \frac{R(\omega)}{(\omega-\sigma)^{2}+\Gamma^{2}}=\frac{\Gamma}{\pi}\left\langle\Psi_{L} \mid \Psi_{R}\right\rangle \\
\text { where } \\
\left(\bar{H}-E_{0}-\sigma-i \Gamma\right)\left|\Psi_{R}\right\rangle=\bar{\Theta}\left|\Phi_{0}\right\rangle \quad \begin{array}{c}
\sigma \\
\text { Lorentz Integra } \\
\text { Transform (LIT) } \\
\text { cc equation of motion } \\
\text { with a source }
\end{array}
\end{gathered}
$$

LIT-CC ansatz for closed-shell nuclei:

$$
\left|\Psi_{R}\right\rangle=\mathcal{R}\left|\Phi_{0}\right\rangle \quad \mathcal{R}=r_{0}+\sum r_{i}^{a} a_{a}^{\dagger} a_{i}+\sum r_{i j}^{a b} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}+\ldots
$$

The case of ${ }^{40} \mathrm{Ca}$

R. Fearick, P. von Neumann-Cosel, S. Bacca, FB et al, Phys. Rev. Research 5, L022044 (2023).

The case of ${ }^{40} \mathrm{Ca}$

R. Fearick, P. von Neumann-Cosel, S. Bacca, FB et al, Phys. Rev. Research 5, L022044 (2023).

Constraints on slope parameter from chEFT interactions of this work: $\mathrm{L}=41-49 \mathrm{MeV}$ Global analysis of all Ca+Pb skin data [J. Lattimer, Particles (2023)]: L $=40 \pm 8 \mathrm{MeV}$

Happy ending for ${ }^{40,48} \mathrm{Ca}$... but what's next?

Happy ending for ${ }^{40,48} \mathrm{Ca}$... but what's next?

Ongoing inelastic proton scattering experiments to measure α_{D}

Happy ending for ${ }^{40,48} \mathrm{Ca}$... but what's next?

Ongoing inelastic proton scattering experiments to measure α_{D}
at iThemba Labs, South Africa and RNCP, Japan of nuclei near closed shells, e.g. ${ }^{42} \mathrm{Ca},{ }^{58} \mathrm{Ni}$...

... and in the future, a FRIB400 upgrade will allow studies of α_{D} for very neutron-rich nuclei with Coulex experiments.

Happy ending for ${ }^{40,48} \mathrm{Ca}$... but what's next?

Ongoing inelastic proton scattering experiments to measure α_{D}
at iThemba Labs, South Africa and RNCP, Japan of nuclei near closed shells, e.g. ${ }^{42} \mathrm{Ca},{ }^{58} \mathrm{Ni}$...

... and in the future, a FRIB400 upgrade will allow studies of α_{D} for very neutron-rich nuclei with Coulex experiments.

LIT-CC for open-shell nuclei: the 2-Particle-Attached (2PA) case

$$
\begin{aligned}
& \mathcal{R}=\frac{1}{2} \sum r^{a b} a_{a}^{\dagger} a_{b}^{\dagger}+\frac{1}{6} \sum r_{i}^{a b c} a_{a}^{\dagger} a_{b}^{\dagger} a_{c}^{\dagger} a_{i}+\ldots \\
& \left|\Psi_{R}\right\rangle=\mathcal{R}\left|\Phi_{0}\right\rangle \\
& \text { 3p1h }
\end{aligned}
$$

Many-body truncations in LIT-CC

To solve

$$
\left(\bar{H}-E_{0}-\sigma-i \Gamma\right)\left|\Psi_{R}\right\rangle=\bar{\Theta}\left|\Phi_{0}\right\rangle
$$

we have two CC expansions, for ground and excited states.

In the closed-shell case we consider excited states @CCSD and vary ground-state scheme.

We then estimate the many-body uncertainty as:

$$
\delta_{\alpha_{D}}^{\mathrm{CC}} \approx \frac{\alpha_{D}^{\mathrm{CCSD}}-\alpha_{D}^{\mathrm{CCSDT}-1}}{2}
$$

What about the 2PA case?

In this case, for the moment we do not have access to orders higher than 3p1h...

If we can't go higher, let's go lower!

We use the 3p1h scheme for excited states, to keep as much correlations as possible in the LIT calculation, and we look at:

$$
\delta_{\alpha_{D}}^{\mathrm{CC}} \approx \frac{\alpha_{D}^{3 \mathrm{p} 1 \mathrm{~h} / 3 \mathrm{p} 1 \mathrm{~h}}-\alpha_{D}^{2 \mathrm{p} 0 \mathrm{~h} / 3 \mathrm{p} 1 \mathrm{~h}}}{2}
$$

Electric dipole polarizability of ${ }^{24} \mathrm{O}$

Electric dipole polarizability of ${ }^{24} \mathrm{O}$

CCSDT-1

Electric dipole polarizability of ${ }^{24} \mathrm{O}$

Electric dipole polarizability of ${ }^{24} \mathrm{O}$

CCSDT-1

Electric dipole polarizability of ${ }^{24} \mathrm{O}$

α_{D} along oxygen isotopes

\ldots and heavier: α_{D} in calcium isotopes

\ldots and heavier: α_{D} in calcium isotopes

\ldots and heavier: α_{D} in calcium isotopes

Conclusions

\square Dipole polarizabilities provide a way to cast light on the collective excitations of the nucleus as well as to put constraints on the nuclear symmetry energy.
\square We extended the reach of ab initio calculations of these electromagnetic observables to nuclei in the vicinity of closed shells, and investigated the effect of many-body truncations.Soon new experimental benchmarks for 2PA nuclei!

