Ruprecht Machleidt

1. arXiv:1202.2839 [pdf, other] nucl-th nucl-ex doi 10.1103/PhysRevLett.108.242501

Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes

Authors: G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, T. Papenbrock

Abstract: We employ interactions from chiral effective field theory and compute binding energies, excited states, and radii for isotopes of oxygen with the coupled-cluster method. Our calculation includes the effects of three-nucleon forces and of the particle continuum, both of which are important for the description of neutron-rich isotopes in the vicinity of the nucleus O-24. Our main results are the pla... \bigtriangledown More

Submitted 11 June, 2012; v1 submitted 13 February, 2012; originally announced February 2012.

Comments: 4 pages, 3 figures; small correction of effective 3NF and slight change of the corresponding parameters; updated figures and table; main results and conclusions unchanged **Journal ref:** Phys. Rev. Lett. 108, 242501 (2012)

2. arXiv:1204.3612 [pdf, other] nucl-th doi 10.1103/PhysRevLett.109.032502

Evolution of shell structure in neutron-rich calcium isotopes

Authors: G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, T. Papenbrock

Abstract: We employ interactions from chiral effective field theory and compute the binding energies and low-lying excitations of calcium isotopes with the coupled-cluster method. Effects of three-nucleon forces are included phenomenologically as in-medium two-nucleon interactions, and the coupling to the particle continuum is taken into account using a Berggren basis. The computed ground-state energies and... \bigtriangledown More

Submitted 15 June, 2012; v1 submitted 16 April, 2012; originally announced April 2012.

Comments: 5 pages, 4 figures; small correction of effective 3NF and slight change of the corresponding parameters; updated figures and tables; main results and conclusions unchanged

Journal ref: Phys. Rev. Lett. 109, 032502 (2012)

3. arXiv:1303.4674 [pdf, other] nucl-th doi 10.1103/PhysRevLett.110.192502

An optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order

Authors: A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich, S. M. Wild

Abstract: We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-next- to-leading order. The resulting new chiral force NNLOopt yields χ^2 happrox 1 per degree of freedom for laboratory energies below approximately 125 MeV. In the A = 3, 4 nucleon systems, the contributions of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We us... ∇ More

Submitted 19 March, 2013; originally announced March 2013.

Comments: 6 pages, 4 figures

Error to report

- Our coupled-cluster computations with 3NFs in nuclear matter were wrong.
- Impact:
 - NNLO_{sat} has more accurate nuclear matter properties than previously reported
 - ΔNNLO_{GO} (which was fit to nuclear matter saturation) is overbound and saturates at too high density
- Errata have been published / are being prepared

Thanks to Weiguang Jiang, Francesco Marino, and Sam Novario for identifying this problem.

The magnetic dipole transition in ⁴⁸Ca – a mystery

Thomas Papenbrock University of Tennessee & Oak Ridge National Laboratory

TRIUMF workshop on Progress in Ab Initio Nuclear Theory, 2/28/2024

Work supported by the US Department of Energy

Collaborators

Bijaya Acharya, Baishan Hu, Gaute Hagen (ORNL)

Sonia Bacca (Mainz)

Petr Navratil (TRIUMF)

Bijaya Acharya, Baishan Hu, S. Bacca, G. Hagen, P. Navratil, TP, "The magnetic dipole transition in ⁴⁸Ca," arXiv:2311.11438

Why do people care about M1 transitions?

Supernova 1987A

M1 spin excitations are dominated by isovector contributions.

The isovector-0 component of the Gamow-Teller operator translates to inelastic neutral-current neutrino-nucleus reactions at energies relevant for supernovae.

Our understanding of M1 impacts supernovae signals and dynamics.

Lüttge, von Neumann-Cosel, Neumeyer, Richter, Nucl Phys A (1996); Langanke, Martinez-Pinedo, von Neumann-Cosel, Richter, Phys Rev Lett (2004); Loens, Langanke, Martinez-Pinedo, Sieja, EPJA (2012); Tornow et al, Phys Letts B (2022).

Review on *M*1:

K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010).

February 24, 1987 Las Campanas Observatory

The resonant 1⁺ state in ⁴⁸Ca at 10.224 MeV

Scattering / reactions that probe the 1^+ state: (e, e'), (p, p'), (p, n), or (γ, n)

Simple picture of the 1⁺ state: neutron 1p-1h excitation; extreme single-particle model: $B(M1) = 12 \mu_N^2$

The mystery

Steffen et al., Phys. Letts. B (1980) (e, e') scattering sees a peak, interpreted as M1 resonance

Steffen et al., Nucl. Phys. A (1983) form factor compared to shell model and quenched shell model $B(M1) = 4.0 \pm 0.3 \mu_N^2$

7

The plot thickens

(e, e') scattering: (γ, n) scattering: (p, p') scattering: $B(M1) = 4.0 \pm 0.3 \,\mu_N^2$ $B(M1) = 6.8 \pm 0.5 \,\mu_N^2$ $B(M1) = 3.85(32) - 4.63(38) \,\mu_N^2$ [Steffen et al 1980; 1983] [Tompkin et al 2011] [Birkhan et al 2016]

Extreme s.p. model: $B(M1) = 12 \mu_N^2$

Theory has a hard time to reproduce a large amount of quenching

A. Harting, W. Weise, H. Toki, and A. Richter, Physics Letters B 104, 261 (1981).

J. B. McGrory and B. H. Wildenthal, Phys. Lett. B 103, 173 (1981).
Toru Suzuki, S. Krewald, and J. Speth, Physics Letters B 107, 9 (1981).
G. F. Bertsch, Nuclear Physics A 354, 157 (1981).
M. Kohno and D. W. L. Sprung, Phys. Rev. C 26, 297 (1982).
K. Takayanagi, K. Shimizu, and A. Arima, Nuclear Physics A 481, 313 (1988).
M. G. E. Brand, K. Allaart, and W. H. Dickhoff, Nuclear Physics A 509, 1 (1990).
B. A. Brown and W. A. Richter, Phys. Rev. C 58, 2099 (1998).

J. D. Holt, J. Menendez, J. Simonis, and A. Schwenk, Phys. Rev. C 90, 024312 (2014). J. Wilhelmy, et al., Phys. Rev. C 98, 034315 (2018).

Meson-exchange currents explain small B(M1)All too high B(M1); $B(M1) = 7 - 8\mu_N^2$; $B(M1) > 5.1\mu_N^2$; Reproduce (e, e')B(M1) if quenched

Why could/should there be quenching?

Results from (*e*, *e*') scattering match quenched shell-model results Von Neumann-Cosel, Poves, Retamosa, Richter, Phys Letts B (1998) Proposed: B(M1) is quenched similarly to B(GT) in pf shell nuclei

 \rightarrow Impacts (re)analyses of (p, p') experiments using the "unit cross section" method

Two-body currents do not quench M1 transitions in light nuclei

$J_i^\pi o J_f^\pi$	Method	IA	$\frac{\pi + \rho}{\mathbf{PS} + \mathbf{V}}$	MEC			Total
				MS	MD	Δ	
${}^{6}\text{Li}(0^{+};1) \rightarrow {}^{6}\text{Li}(1^{+};0)$	VMC	3.683(14)	0.307	0.003	0.010	-0.053	3.950(14)
${}^{6}\text{Li}(0^{+};1) \rightarrow {}^{6}\text{Li}(1^{+};0)$	GFMC	3.587(16)	0.323	0.002	0.012	-0.048	3.876(14)
$^{7}\text{Li}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Li}(\frac{3}{2}^{-})$	VMC	2.743(17)	0.396	0.006	-0.017	-0.034	3.162(22)
$^{7}\text{Li}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Li}(\frac{3}{2}^{-})$	GFMC	2.677(19)	0.395	0.011	-0.017	0.072	3.138(22)
$^{7}\text{Be}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Be}(\frac{3}{2}^{-})$	VMC	2.420(30)	0.390	-0.005	0.010	-0.024	2.791(36)
$^{7}\text{Be}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Be}(\frac{3}{2}^{-})$	GFMC	2.374(31)	0.394	-0.010	0.010	-0.002	2.766(36)
Marcucci, Muslema Pervin,	Pieper, Schiavilla	,	$\overline{\mathbf{\mathbf{b}}}$			$\overline{\mathbf{v}}$,
Winnga, Phys Rev C 78, 065	This is similar to			This is perhaps			
		W	hat we will u	se		similar to wi	nat Lin
						the 1980s	, 111 S

An interesting and challenging problem... ...for *Ab Initio*

Conceptually simple: neutron 1p-1h excitation $(a_{5/2}^+ \times a_{7/2})^{(1)}|^{48}Ca\rangle$

However: The excited 1^+ state at $E_{1^+} = 10.224$ MeV is just above the threshold for neutron emission, and we have $S_n = 9.952$ MeV

(It seems all previous computations considered only bound states) **...and**: (e, e') and (p, p')experiments indicated that a lot of quenching is going on.

Where does this come from?

→ Coupled-cluster method seems attractive for this

→ Need to use Gamow basis that includes resonances and continuum effects

 \rightarrow Need to include two-body currents

The resonant 1⁺ state in ⁴⁸Ca at 10.224 MeV

Interaction	S_n	ΔE	Γ	1p-1h
Interaction	(MeV)	(MeV)	(keV)	
$\Delta NNLO_{GO}(394)$	9.74	-0.44	0	91%
$\Delta NNLO_{GO}(450)$	9.38	-1.26	0	91%
NNLO _{sat}	9.34	-0.23	0	91%
1.8/2.0(EM)	10.00	0.55	4	92%
Experiment	9.95	0.28	≤ 17	

Bijaya Acharya et al., arXiv:2311.11438

The l = 3 orbital angular-momentum barrier permits a neutron resonant state

Bijaya Acharya et al., arXiv:2311.11438

Final result

Bijaya Acharya et al., arXiv:2311.11438

Magnetic moments

Takayuki Miyagi et al., arXiv:2311.14383, propose that multi-shell VS-IMSRG calculation yields accurate results for ⁴¹Ca.

Almost Summary

- The discrepancy between (e, e') and (γ, n) experiments regarding B(M1) in ⁴⁸Ca is puzzling
- Our ab initio computations based on chiral effective field theory, including treatment of the state as a resonance, yield $7\mu_N^2 < B(M1) < 10 \mu_N^2$
 - Two-body currents do not yield quenching of B(M1)
 - Similar to what was found in light nuclei
- Resolution of this puzzle will impact ab initio computations and/or theory of neutrino-nucleus reactions relevant for supernova signals and dynamics

Time-dependent coupled-cluster method

Dusted off (and updated!) time-dependent coupled cluster code [Pigg, Hagen, Nam, TP, Phys Rev C 2012].

$$\overline{H}|\Phi\rangle = i\hbar e^{-S}\partial_t e^S|\Phi\rangle \qquad \overline{H} \equiv e^{-S}H e^S$$

Work in progress: Kyle Godbey, Gaute Hagen, TP preliminary

Making sense of spectra in odd-mass nuclei

Zhonghao Sun et al., in preparation Hartree-Fock computations yield deformed reference Coupled-cluster + projection yields bands

NCSM from Caprio, Maris, Vary & Smith, Int. J. Mod. Phys. E 24, 1541002 (2015)

Summary

- The discrepancy between (e, e') and (γ, n) experiments regarding B(M1) in ⁴⁸Ca is puzzling
- Our ab initio computations based on chiral effective field theory, including treatment of the state as a resonance, yield $7\mu_N^2 < B(M1) < 10 \mu_N^2$
 - Two-body currents do not yield quenching of B(M1)
 - Similar to what was found in light nuclei
- Resolution of this puzzle will impact ab initio computations and/or theory of neutrino-nucleus reactions relevant for supernova signals and dynamics

- Dusted off time-dependent coupled-cluster code; response functions soon; want to join the movie-making business later
- Odd mass deformed nuclei

Thank you!