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Advantages of the IMSRG
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tens of keV—well beyond current levels of precision—can
make the difference between an isotope being bound or
unbound. Therefore, an assessment of theoretical uncer-
tainty is mandatory for any meaningful drip line prediction.
Ab initio methods present an appealing framework for
uncertainty quantification: one begins with the most gen-
eral Lagrangian compatible with the applicable sym-
metries, organized by a systematically improvable power
counting, then solves the nuclear many-body problem
within a controlled and systematically improvable approxi-
mation scheme, propagating all uncertainties. Such a
prescription has not yet been achieved in practice, so for
the present we use a comparison with known data to
calibrate a physically motivated model for the error. Recent
work in a similar spirit has applied Bayesian machine
learning algorithms to global mass models [10,41,42]. The
main advantages of our current approach are (i) the
predictions should not be biased towards measured data,
because they were not fit to any data beyond helium and
(ii) the predictions can be benchmarked where the proton
and neutron drip lines are known experimentally (mass
models are typically applied to Z ≳ 8).
In the VS-IMSRG, a valence-space Hamiltonian of

tractable dimension is decoupled from the larger Hilbert
space via an approximate unitary transformation. We begin
in a harmonic-oscillator basis of 15 major shells (i.e.,
e ¼ 2nþ l ≤ emax ¼ 14) with an imposed cut of e1 þ e2 þ
e3 ≤ E3Max ¼ 16 for 3N matrix elements. The resulting
ground-state energies are converged to better than a few

hundred keV with respect to these truncations, and we
perform extrapolations in emax to obtain infrared conver-
gence [43,44]. Transforming to the Hartree-Fock basis, we
capture effects of 3N interactions between valence nucleons
via the ensemble normal ordering of Ref. [35]. We then use
the Magnus formulation of the IMSRG [29,45], truncating
all operators at the normal-ordered two-body level—the
IMSRG(2) approximation—to generate approximate
unitary transformations that decouple the core energy
and valence-space Hamiltonian for each nucleus to be
calculated.
By default, we employ a so-called 0ℏω valence space,

where valence nucleons occupy the appropriate single
major harmonic-oscillator shell (e.g., for 8 < NðZÞ < 20
the sd shell, 20 < NðZÞ < 40 the pf shell, etc.). At
NðZÞ ¼ 2, 8, 20, 40, we do not decouple a neutron (proton)
valence space, and no explicit neutron (proton) excitations
are allowed in the calculation. We discuss exceptions to this
below. Finally the resulting valence-space Hamiltonians are
diagonalized with the NuShellX@MSU shell-model code [46]
(with the exception of a few of the heaviest Ca, Sc, and Ti
isotopes, which were computed with the m-scheme code
Kshell [47]).
We thus calculate ground (and excited) states of all

nuclei from helium to iron, except those for which the shell-
model diagonalization is beyond our computational limits.
For the input NNþ 3N interaction, we use the potential
labeled 1.8=2.0 (EM) in Refs. [17,48], where the 3N
couplings were fit to the 3H binding energy and the 4He

FIG. 1. Calculated probabilities for given isotopes to be bound with respect to one- or two-neutron (proton) removal. The gray region
indicates nuclei that have been calculated, while the height of the boxes corresponds to the estimated probability that a given nucleus is
bound with respect to one- or two-neutron (proton) removal in the neutron-rich (deficient) region of the chart. The inset shows the
residuals with experimental ground-state energies.

PHYSICAL REVIEW LETTERS 126, 022501 (2021)

022501-2

Global study of ~700 nuclei from IMSRG(2)

• Mild scaling with system size

• Non-perturbative resummation

• Flexibility: enables for targeting 
diverse set of observables

Stroberg et al., PRL (2021)

• Unitary transformation: easy 
interface with other methods

• Successfully merged with with 
many techniques in the past

(In-medium) 
RPA, GCM, NCSM, …

see talks by 
Matthias, Ragnar and Heiko!
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The valence-space IMSRG
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• Many-body observables from large-space 
shell-model diagonalization

Stroberg et al.,  Ann. Rev. Nucl. Part. Sci (2019)

In the language of the renormalization group, He↵ is a fixed point of the RG flow.

One choice for ⌘(s), which is used in the calculations we will describe here is the White
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Returning to the flow equation, it is clear that if Hod ! 0, then ⌘ ! 0 and by Eq. (11)

we see that dH(s)
ds ! 0, so He↵ is indeed a fixed point of the flow. One potential issue

with the generator (17) is that a vanishing energy denominator will cause ⌘ to diverge. An

alternative, also suggested by White (169) (see also (171)), is
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The arctangent—motivated by the solution of a 2⇥2 system via Jacobi rotations—regulates

the divergent behavior of Eq. (17) in the presence of small denominators. The arctangent

and division by the energy denominator in Eq. (20) should be interpreted as operating

element-wise, as described above.
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Figure 2: A schematic representing of how the IMSRG approach obtains the e↵ective in-

teraction He↵ by progressively suppressing the o↵-diagonal terms of H. (a)s = 0, (b)s = 5,

(c)s = 30

The IMSRG is formulated in terms of Fock-space operators, and so its computational

cost scales polynomially with the basis size N , but not explicitly with the number of particles

being treated. In practical applications, we truncate all operators at a consistent particle

rank to close the system of flow equations arising from Eq. (11) (see Appendix A). We

also set up the decoupling conditions to be minimally invasive to avoid an uncontrolled
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Valence-space 

decoupling

• Benefits from extensive machinery from 
shell-model developers

• Non-perturbative decoupling of particle-
hole excitations from valence space

H(s) = U†(s)HU(s)
<latexit sha1_base64="6hjjLySVM5SBZHEf8gmNccBQ9eI="></latexit>

• Large no-core problem mapped to 
tractable active-space problem

• Simple access to low-lying spectroscopy

Challenge:
Computational cost of 

diagonalization
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Wave-function representations
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• Many-body state is inefficiently represented in configuration interaction

<latexit sha1_base64="bAXw7AhO2zaoFdbqh9QBcaFYFHw="></latexit>

|�i =
X

p1...pN
�p1...pN |p1 · · ·pNi

• Approximate MPS representation obtained by limiting intermediate summation

complexity dN

(d: local dimension, e.g. d=2 for s=1/2 spin chain)

• Exact rewriting of CI wave function using matrix product state (MPS) ansatz

<latexit sha1_base64="auWBOcFs/gi0sUF/maRh0CffC1I="></latexit>

|�i =
X

p1...pN

X

�1...�N
A�1p1A

�1�2
p2
· · ·A�N�1�NpN�1

A�NpN |p1 · · ·pNi

physical indices

bond indices

d dd2 d2d3

bond dimension M
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Density matrix renormalization group
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• DMRG provides a variational procedure for the calculation of expectation values

• Rewriting expectation value in terms of MPS factors yields tensor network

= E

• DMRG sweeps: traverse topology and variational update local factors

• Limited by the number of orbitals and required bond dimension

White, PRL (1991)

Schollwöck, Ann. Phys. (2011)

Hybrid approach:
Map no-core problem to small active 

space (IMSRG) and find variational 
approximation (DMRG)!

Removal of two neighbouring sites Construction of two-site tensor

site i site i+1
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DMRG vs. CI: Many-body convergence
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DMRG/CI energies vs. effective dimension of HA

• DMRG: economic representation 
of the many-body wave function

• Slow convergence of binding 
energies in CI calculations

• Robust convergence of DMRG 
energies at large bond dimension

• DMRG does extend CI capacities

• B(E2) transition: more systematic 
convergence pattern compared to CI

Tichai et al. (2024)
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Orbital ordering
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……

• Ordering problem: which arrangement yields most rapid convergence?

• Finding best ordering is complicated and requires exhausting all N! possibilities

Presence of long-range correlations problematic

Strong coupling?
No problem!

Strong coupling? Problem!
High bond dimension required

• 'Bad encodings’: MPS must have large bond dimension to capture correlations

• Microscopic understanding of nuclear correlations can guide heuristics
<latexit sha1_base64="Gij25Z8vQp9i9JAmAfQFU8fdSjY=">AAACL3icbZDLSsNAFIYn9VbjrerSzWARXNiSSK1uhIIblxXsBZoQJtNJO3QyCTOTQgl9Ep/CR3CrDyBuRHDlWzhpK/TiDwMf/zmHc+b3Y0alsqwPI7e2vrG5ld82d3b39g8Kh0dNGSUCkwaOWCTaPpKEUU4aiipG2rEgKPQZafmDu6zeGhIhacQf1Sgmboh6nAYUI6Utr3AlPQpvYQmaXINzAR0W9WDGJej4SMB5+88wvULRKlsTwVWwZ1AEM9W9wrfTjXASEq4wQ1J2bCtWboqEopiRsekkksQID1CPdDRyFBLpppPvjeGZdrowiIR+XMGJOz+RolDKUejrzhCpvlyuZeZ/tU6ighs3pTxOFOF4uihIGFQRzLKCXSoIVmykAWFB9a0Q95FAWOlEF7cIMhzrVOzlDFaheVm2q+XKQ6VYq87yyYMTcArOgQ2uQQ3cgzpoAAyewAt4BW/Gs/FufBpf09acMZs5Bgsyfn4B3AGmBw==</latexit>

s� = �n� logn� � n̄� log n̄�
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The role of the DMRG topology
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Orbital ordering and DMRG convergence • Random ordering gives bad results 
being trapped in local minimum

• BCS ordering: time-reversed states 
next to each other (mj, -mj)

• Stable convergence of shell-model 
ordering but 500 keV off at large M

• Quasi-optimal ordering gives 
consistently best results

• Arrangement of j multiplets 
significantly impacts convergence
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<latexit sha1_base64="NYsQe/QPAufbaMJi8DKhcTKMf20="></latexit>

{� : s1/2 d3/2 d5/2 g7/2 g9/2; � : ƒ7/2 ƒ5/2 p3/2 p1/2}
Quasi-optimal ordering
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Transitional nuclei at N=50
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• Ratios of 4+/2+ excitation energies 
close to rigid-rotor limit

<latexit sha1_base64="sMUIQNV8pBlg0m3fR5RMSmIyk28="></latexit>

E?rot ⇠ J(J + 1)

Tichai et al. (2024)

• Increase of B(E2) values towards 
open-shell 74Cr

• Rapid transition between single-
particle-like and collective excitations

• Qualitative agreement with previous 
shell-model calculations

Nowacki et al., PRL (2016)

• Island-of-inversion: very low 0p0h-
component in ground state 

Spectroscopy of N=50 isotones
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Future challenges: shape coexistence
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• Emergence of excited-state 
rotational band in 78Ni

Nowacki et al., PRL (2016)

• Second 0+ state comes out much higher 
at 5 MeV: IMSRG(3) and beyond?

• Complementary perspective on 
deformation from valence-space HFB

Spectroscopy of N=50 isotones

now the 0p-0h components amount to 33%. The distortion
of the spectrum is due to the mixing of the spherical and the
deformed 0þ’s. Thus, the doublet of 0þ states in 76Fe
signals the rapid transition from the doubly magic ground
state of 78Ni to the fully rotational case of 74Cr, where the
collective behavior is well established, and the neutron
4p-4h intruder becomes dominant in the yrast band, with a
2þ at 0.27 MeV and Eð4þÞ=Eð2þÞ ¼ 3 (see Fig. 3).
Collectivity persists to a lesser extent in 72Ti, whose 2þ

is at 0.41 MeV. There is no experimental information for
these nuclei yet. Table II shows the calculated BðE2Þ values
and spectroscopic quadrupole moments, which correspond,
in the well-deformed case of 74Cr, to βmass ∼ 0.32 and
βcharge ∼ 0.35 in very nice agreement with the results of the
CHF PES. In Table III, we display the occupation numbers
of the neutron and proton orbits above the N ¼ 50, Z ¼ 28
doubly magic closure. It is seen that in the neutron side,
they evolve from 2.7 neutrons excited in 78Ni to a
maximum of 4.9 neutrons in 74Cr, and down to 3.3 neutrons
in 70Ca. Importantly, we verify that in all the cases, all the
excited orbits have non-negligible occupations, as expected
in a pseudo-SU(3) regime, which, however, is only fully
dominant in 74Cr. In the proton sector, the p3=2 orbit is
preferentially populated, as should happen in the quasi-
SU(3) limit, except in 78Ni, where the proton collectivity is
rather of pseudo-SU(3) type. 70Ca is the most neutron-rich

nuclei in our palette and the one for which our predictions
are less dependable because of the far-off extrapolation of
the neutron ESPEs. It has a curious structure, more vibra-
tional than superfluid, with its ground state wave function
evenly split ð24=24=21=16Þ% between the ð0=2=4=6Þp-h
configurations, and a first excited 0þ state at about 500 keV
of doubly magic, N ¼ 50, Z ¼ 20, character.
Finally, we gather in Fig. 4, the evolution of the 2þ

excitation energies for the nickel and chromium chains. The
present calculations are complemented towards N ¼ 40,
with the results obtained using the LNPS interaction and
valence space [13]. It is seen that the magic peaks in the
nickels, at N ¼ 40 and N ¼ 50, disappear completely in
the chromiums: the fingerprint of the onset of deformation
and of the entrance in the IOIs. The same is indeed true
for the iron chain. The agreement of the SM CI
description with experiment may soon extend to full chains
of isotopes from the proton to the neutron drip lines, for
instance, from 48Ni and 44Cr (N ¼ 20) in the pf shell
with the KB3G interaction, to 80Ni and 76Cr (N ¼ 52)
using PFSDG-U.
In conclusion, it looks as if nature would like to replicate

the N ¼ 40 physics at N ¼ 50. Shape coexistence in
doubly magic 78Ni turns out to be the portal to a new
IOI at N ¼ 50, which merges with the well established one
at N ¼ 40 for the isotopes with Z ≤ 26. With this new
addition, the archipelago of IOIs in the neutron rich shores
of the nuclear chart counts now five members: N ¼ 8, 20,
28, 40, and 50.

This work is partly supported byMINECO (Spain) Grant
No. FPA2014-57196 and Programme “Centros de
Excelencia Severo Ochoa” SEV-2012-0249, and by an
USIAS Fellowship of the Université de Strasbourg.

Note added.—A paper describing the heaviest nickel
isotopes with “ab initio” methods has appeared in [30]
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FIG. 3. Theoretical spectra of the N ¼ 50 isotones with the
PFSDG-U interaction. In red the deformed intruder band of 78Ni.

TABLE III. Average number of p-h excitations and occupancies
of the neutron and proton orbits above N ¼ 50 and Z ¼ 28 for
several intruder states.

nνp−h nπp−h dν5=2 sν1=2 gν7=2 dν3=2 pπ
3=2 fπ5=2 pπ

1=2

78Ni 0þ2 2.7 2.3 1.1 0.8 0.4 0.4 0.9 1.0 0.4
76Fe 2þ1 3.0 1.4 1.2 0.8 0.6 0.4 0.8 0.4 0.2
74Cr 0þ1 4.9 1.6 1.8 1.1 1.2 0.8 1.1 0.3 0.2
72Ti 0þ1 4.8 0.9 2.2 0.7 0.6 1.3 0.7 0.1 0.1
70Ca 0þ1 3.5 0.0 1.9 0.3 0.2 1.1 0.0 0.0 0.0
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FIG. 4. 2þ energy systematics in the nickel and chromium
isotopic chains. Experimental data compared with calculations
using the LNPS [13] and PFSDG-U interactions.
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Spectroscopic results.—Let’s move now to the predic-
tions of the full-fledged diagonalizations using the inter-
action PFSDG-U, starting with the results at a fixed number
of neutron excitations across the N ¼ 50 closure. For this
calculation, we do not impose any truncation in the proton
space. The structure of the 2p-2h and 4p-4h bands are very
similar for all the isotopes (except for 70Ca) and correspond
to well-deformed rotors with a nearly perfect JðJ þ 1Þ
spacing, and BðE2Þ is consistent with deformation param-
eters very close to the ones obtained in the SU(3) limit (we
use standard effective charges qπ ¼ 1.31 and qν ¼ 0.46).
For the 2p-2h yrast band of 74Cr, we have Eð2þÞ ¼
0.27 MeV and BðE2Þð2þ1 → 0þ2 Þ ¼ 360 e2 fm4, whereas
for the 4p-4h one, we get Eð2þÞ ¼ 0.17 MeV and
BðE2Þð2þ1 → 0þ2 Þ ¼ 555 e2 fm4. We have estimated the
correlation energies of the 2p-2h and 4p-4h neutron
configurations, diagonalizing a properly normalized quad-
rupole interaction in the sdg space for the neutrons and the
quasi-pf doublet for the protons. The results are displayed
in Table I. It is seen that both for the 2p-2h and 4p-4h cases,
the largest correlation energies correspond to 74Cr and 76Fe,
followed by those of 78Ni and 72Ti. Notice that removing
protons from 78Ni, the intruder configurations will benefit
from the gain in correlation energy and from the reduction

of the N ¼ 50 neutron gap; therefore, we may expect an
abrupt shape change producing an IOI.
For the full diagonalizations, we use a truncation scheme

in terms of the sum of the number of neutron excitations
across N ¼ 50 and proton excitations across Z ¼ 28 (t).
We perform full-space calculations for Ca, Ti, and Cr and
we are limited to t ¼ 8 for Ni and Fe, but the calculations
seem to be converged. For 78Ni (see Fig. 3), we predict a
doubly magic ground state at 65%, with a first 2þ excited
state at 2.88 MeV, which belongs to the (prolate) deformed
band based in the intruder 0þ, which appears at an
excitation energy of 2.65 MeV, and a second 2þ of
1p-1h nature at 3.15 MeV, connected to the ground state
with BðE2Þ ¼ 110 e2 fm4. We have plotted as well the
yrast 4þ, which belongs to the deformed band, its 6þ

member, and several states of particle-hole nature. The
BðE2Þð2þ1 → 0þ2 Þ goes up to 516 e2 fm4. The location of
the intruder band depends of the competition of the
monopole losses, whose linear part is given by the neutron
ESPEs and the correlation gains (see Table I). In 78Ni, the
balance favors the closed shell, with the intruder 2p-2h
(neutron) band below 3 MeV. Removing two protons in
76Fe, the N ¼ 50 gap is reduced and the correlation energy
increased. This produces an abrupt lowering of the intruder
configurations whose bandheads become nearly degener-
ated with the 0p-0h N ¼ 50 closure. Hence, the ground
state of 76Fe turns out to be a very complicated mixture of
np-nh configurations, including 21% of 0p-0h and 33% of
neutron 2p-2h. The yrast 2þ appears at 0.43 MeV and it is
rather of 2p-2h plus 4p-4h nature. This mismatch produces
a certain quenching of the BðE2Þ relative to the spectro-
scopic quadrupole moment of the 2þ as seen in Table II.
Most interestingly, the first excited state is another 0þ at
0.36 MeV, which is also of very mixed nature, although
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FIG. 2. Projected Energy Surfaces for 78Ni, 76Fe, and 74Cr with
the interaction PFSDG-U.

TABLE I. Quadrupole correlation energies of the neutron
intruder configurations, relative to the N ¼ 50 closure (in MeV).

78Ni 76Fe 74Cr 72Ti 70Ca

2p-2h 5.3 6.5 7.0 5.3 2.2
4p-4h 9.3 10.9 11.3 9.1 4.8

TABLE II. Some E2 properties of the N ¼ 50 isotones.
Energies in MeV, BðE2Þ’s in e2 fm4, Q’s in e fm2.

ΔE BðE2Þ↓ Qs

2þ 4þ 6þ 2þ 4þ 6þ 2þ 4þ 6þ

78Ni 2.88 3.45 4.14 32 783 1021 −39 −65 −75
76Fe 0.43 1.05 1.90 314 707 969 −45 −57 −63
74Cr 0.24 0.72 1.38 630 911 1004 −51 −66 −74
72Ti 0.41 1.02 1.78 321 506 580 −34 −45 −53
70Ca 0.91 1.80 2.56 119 194 5 −3 þ8 þ8
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Spectroscopic results.—Let’s move now to the predic-
tions of the full-fledged diagonalizations using the inter-
action PFSDG-U, starting with the results at a fixed number
of neutron excitations across the N ¼ 50 closure. For this
calculation, we do not impose any truncation in the proton
space. The structure of the 2p-2h and 4p-4h bands are very
similar for all the isotopes (except for 70Ca) and correspond
to well-deformed rotors with a nearly perfect JðJ þ 1Þ
spacing, and BðE2Þ is consistent with deformation param-
eters very close to the ones obtained in the SU(3) limit (we
use standard effective charges qπ ¼ 1.31 and qν ¼ 0.46).
For the 2p-2h yrast band of 74Cr, we have Eð2þÞ ¼
0.27 MeV and BðE2Þð2þ1 → 0þ2 Þ ¼ 360 e2 fm4, whereas
for the 4p-4h one, we get Eð2þÞ ¼ 0.17 MeV and
BðE2Þð2þ1 → 0þ2 Þ ¼ 555 e2 fm4. We have estimated the
correlation energies of the 2p-2h and 4p-4h neutron
configurations, diagonalizing a properly normalized quad-
rupole interaction in the sdg space for the neutrons and the
quasi-pf doublet for the protons. The results are displayed
in Table I. It is seen that both for the 2p-2h and 4p-4h cases,
the largest correlation energies correspond to 74Cr and 76Fe,
followed by those of 78Ni and 72Ti. Notice that removing
protons from 78Ni, the intruder configurations will benefit
from the gain in correlation energy and from the reduction

of the N ¼ 50 neutron gap; therefore, we may expect an
abrupt shape change producing an IOI.
For the full diagonalizations, we use a truncation scheme

in terms of the sum of the number of neutron excitations
across N ¼ 50 and proton excitations across Z ¼ 28 (t).
We perform full-space calculations for Ca, Ti, and Cr and
we are limited to t ¼ 8 for Ni and Fe, but the calculations
seem to be converged. For 78Ni (see Fig. 3), we predict a
doubly magic ground state at 65%, with a first 2þ excited
state at 2.88 MeV, which belongs to the (prolate) deformed
band based in the intruder 0þ, which appears at an
excitation energy of 2.65 MeV, and a second 2þ of
1p-1h nature at 3.15 MeV, connected to the ground state
with BðE2Þ ¼ 110 e2 fm4. We have plotted as well the
yrast 4þ, which belongs to the deformed band, its 6þ

member, and several states of particle-hole nature. The
BðE2Þð2þ1 → 0þ2 Þ goes up to 516 e2 fm4. The location of
the intruder band depends of the competition of the
monopole losses, whose linear part is given by the neutron
ESPEs and the correlation gains (see Table I). In 78Ni, the
balance favors the closed shell, with the intruder 2p-2h
(neutron) band below 3 MeV. Removing two protons in
76Fe, the N ¼ 50 gap is reduced and the correlation energy
increased. This produces an abrupt lowering of the intruder
configurations whose bandheads become nearly degener-
ated with the 0p-0h N ¼ 50 closure. Hence, the ground
state of 76Fe turns out to be a very complicated mixture of
np-nh configurations, including 21% of 0p-0h and 33% of
neutron 2p-2h. The yrast 2þ appears at 0.43 MeV and it is
rather of 2p-2h plus 4p-4h nature. This mismatch produces
a certain quenching of the BðE2Þ relative to the spectro-
scopic quadrupole moment of the 2þ as seen in Table II.
Most interestingly, the first excited state is another 0þ at
0.36 MeV, which is also of very mixed nature, although
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TABLE I. Quadrupole correlation energies of the neutron
intruder configurations, relative to the N ¼ 50 closure (in MeV).

78Ni 76Fe 74Cr 72Ti 70Ca

2p-2h 5.3 6.5 7.0 5.3 2.2
4p-4h 9.3 10.9 11.3 9.1 4.8

TABLE II. Some E2 properties of the N ¼ 50 isotones.
Energies in MeV, BðE2Þ’s in e2 fm4, Q’s in e fm2.

ΔE BðE2Þ↓ Qs

2þ 4þ 6þ 2þ 4þ 6þ 2þ 4þ 6þ

78Ni 2.88 3.45 4.14 32 783 1021 −39 −65 −75
76Fe 0.43 1.05 1.90 314 707 969 −45 −57 −63
74Cr 0.24 0.72 1.38 630 911 1004 −51 −66 −74
72Ti 0.41 1.02 1.78 321 506 580 −34 −45 −53
70Ca 0.91 1.80 2.56 119 194 5 −3 þ8 þ8
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78Ni74Cr

see also Taniuchi et al., Nature (2019)

• Pronounced spherical minimum in 
78Ni but prolate minimum in 74Cr
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• Entanglement measures offer better understanding of (nuclear) correlation effects

• Partition orbital space: orbital reduced density matrices from partial trace

�A = TrB �AB
<latexit sha1_base64="Mly8Clh1PyVziVyTFeKw8OlB6m4=">AAACG3icbVA9SwNBEN2LX/E7ammzGgQLCXcqaiMksbGMkBghdxx7m0myZO+D3TkxHFf7K/wJtvoD7MTWwto/4iWmMIkPBh7vzTAzz4uk0GiaX0Zubn5hcSm/vLK6tr6xWdjavtVhrDg0eChDdecxDVIE0ECBEu4iBcz3JDS9/tXQb96D0iIM6jiIwPFZNxAdwRlmklvYs1UvdCv0ktoID5jUVepWqX1ER3pSqaZuoWiWzBHoLLHGpEjGqLmFb7sd8tiHALlkWrcsM0InYQoFl5Cu2LGGiPE+60IrowHzQTvJ6JWUHmRKm3ZClVWAdKT+nUiYr/XA97JOn2FPT3tD8T+vFWPnwklEEMUIAf9d1IklxZAOc6FtoYCjHGSEcSWyWynvMcU4ZulNblFwP0zFms5gltwel6yT0vHNabF8Ns4nT3bJPjkkFjknZXJNaqRBOHkkz+SFvBpPxpvxbnz8tuaM8cwOmYDx+QNaHqD3</latexit>

(A, B two subsystems)

• Total correlation obtained from sum of single-orbital entropies

Stotal =
X

�
s�

<latexit sha1_base64="NvT3DyVpNEfbOT1XS3GEa1tWzzs=">AAACF3icbVDJSgNBEO1xjeMW9ShCYxA8hZko6kUIePEY0SyQhKGnU0ma9Cx01wTDkJNf4Sd41Q/wJl49evZH7CwHk/ig4PFeFVX1/FgKjY7zbS0tr6yurWc27M2t7Z3d7N5+RUeJ4lDmkYxUzWcapAihjAIl1GIFLPAlVP3ezciv9kFpEYUPOIihGbBOKNqCMzSSlz269xoIj5hihEwOqX1tN3QSeIJqT9heNufknTHoInGnJEemKHnZn0Yr4kkAIXLJtK67TozNlCkUXMLQbiQaYsZ7rAN1Q0MWgG6m4zeG9MQoLdqOlKkQ6Vj9O5GyQOtB4JvOgGFXz3sj8T+vnmD7qpmKME4QQj5Z1E4kxYiOMqEtoYCjHBjCuBLmVsq7TDGOJrnZLQr6Q5OKO5/BIqkU8u5ZvnB3niteTPPJkENyTE6JSy5JkdySEikTTp7IC3klb9az9W59WJ+T1iVrOnNAZmB9/QKaX5+E</latexit>

• Single-orbital entropy encodes nuclear correlation effects in a simple way

• Orbital entanglement from orbital-reduced density matrix: A={i} and B={rest of basis}

�� =
Å
1 � ��� 0
0 ���

ã

<latexit sha1_base64="2YbHMSTlZUmOdkdJweQdZyXSvQ4="></latexit>

𝛾: reduced density matrix
(NOT orbital-reduced matrix!)

see also Robin, Savage, Pillet, Gu, Sun, Hagen, Papenbrock, Pérez-Obiol, Rios, Menéndez,…

<latexit sha1_base64="jzPkFT88wgkzo3m70fmyyEktZ0g="></latexit>

s� = �Tr�� log��  log 2
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• Agreement with conventional prediction 
based on 2+ excitation energies

• Pronounced kink at 78Ni hints at neutron 
shell closure (~ dominated by HF)

Total entropy in even-mass nickel isotopes

Total entropy is a good 
proxy for shell closures!

• Larger bond dimensions required to 
converge 78Ni excited state

• Deviation from experiment attributed 
to missing triples corrections: IMSRG(3)

(… but non-observable and basis dependent!)

see also Taniuchi et al., Nature (2019)

Tichai et al., PLB (2023)
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FIG. 2. Neutron, proton, and total entropies (top) and 2+ excitation
energies (bottom) along even-mass nickel isotopes. Entropies are
calculated at bond dimension M = 10240 whereas for the excitation
energies the bond dimension was varied between M = 256 � 10240.
Experimental values are taken from Ref. [65].

Neutron-rich nickel isotopes from VS-DMRG.– To show
the power of the VS-DMRG, we apply this new approach
to the description of neutron-rich nickel isotopes that are at-
tracting significant experimental attention, e.g., with the re-
cent discovery of the doubly magic nature of 78Ni [66]. In
fact, ab initio calculations approaching 78Ni require addi-
tional truncations of the configuration interaction (CI) or shell
model space when exploring a 0~! valence space on top of
a 60Ca core [67]. In this work, the CI calculations haven
been performed using the KSHELL [68] and BIGSTICK [69]
codes, while the DMRG calculations together with quantum-
information-based analysis tools used the DMRG-Budapest
program package [70].

In Fig. 1 we compare large-scale CI and VS-DMRG calcu-
lations for 78Ni based on the same VS-IMSRG interaction as
in Ref. [66]. The top panel shows the dimension of the CI and
VS-DMRG spaces, respectively. For 78Ni, the FCI dimension
is 2.3 ·1011, while our largest CI calculations involved 1.9 ·109

configurations employing a truncation at Tmax = 7 particle-
hole (ph) excitations. In contrast, the dimension of the DMRG
space increases only gradually, and is well tractable even for
the largest considered bond dimension M = 10240, with cor-
responding configuration space of ⇡ 107, two orders of mag-
nitude below the largest accessible CI dimension. The DMRG
dimension is essentially the dimension of the space spanned

FIG. 3. Neutron and proton entropies from VS-DMRG calculations
for the oxygen chain (left) and for the evolution at N = 16 from the
closed proton shell to 26Ne and 28Mg (right). Vertical dashed lines
indicate neutron shell closures.

by the two block spaces and the two orbitals, ⇠ M2d2, further
constrained by selection rules for parity, isospin and angular-
momentum projection. Figure 1 clearly shows that the VS-
DMRG results for the ground and first 2+ excited states reveal
a more robust convergence pattern compared to the CI cal-
culation. While the ground-state energy converges system-
atically in the CI case, there is still a sizeable linear trend
present for the first excited 2+ state, making the extrapola-
tion of the excitation energy challenging. This may poten-
tially hint at relevant 8p8h excitations missing in the Tmax = 7
truncation. In contrast, the VS-DMRG results converge sys-
tematically beyond M = 1024. Fitting a quadratic polynomial
fextr.(1/M) = a/M2 + b/M + c enables a robust extrapolation
of the energies [42]. Extrapolation uncertainties are obtained
by taking into account only the 3, 4, 5 data points correspond-
ing to the largest bond dimensions, yielding a VS-DMRG es-
timate of E?2+ = 3.007 ± 0.017 MeV. At much lower space
dimensions, the VS-DMRG approach thus yields much lower
uncertainties compared to CI (E?2+ = 3.141 ± 0.205 MeV).

Next we study the emergence of shell structure from the
perspective of the information entropy from our VS-DMRG
calculations. Figure 2 displays neutron, proton and total en-
tropies and 2+ excitation energies for 70�80Ni. The total en-
tropy shows a pronounced kink for 78Ni consistent with its
doubly magic nature. The proton contribution to the total en-
tropy is small from 70Ni to 78Ni and then exhibits a strong
increase to 80Ni. We attribute this sudden increase of proton
correlations to the onset of nuclear deformation e↵ects. This
is also consistent with the rapid transition from spherical to
deformed ground states beyond 78Ni predicted in Ref. [66].
As expected from the VS-IMSRG results in Ref. [66], the
VS-DMRG reproduces nicely the high 2+ excitation energy
in 78Ni, with an improved result of E?2+ = 3.01 MeV com-
pared to the published VS-IMSRG excitation energy E?2+ .
3.34 MeV) [67]. The di↵erence to the experimental value of
E?2+ = 2.6 MeV is therefore significantly decreased for this

shell closure
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• Orbital correlation are only 
slowly built up in CI expansions

• Total amount of entanglement 
much higher in DMRG approach

• Subset of orbitals well captured 
at very low CI truncations: f7/2

• Selected 6p-6h excitations (and 
more) are needed for high accuracy

Tichai et al. (2024)

Entropies in DMRG and CI

DMRG efficiently captures 
important correlations
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• Better understanding of orbital correlation effects between two states

�AB = TrC �ABC
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A = {orbit i}

B = {orbit j}

C = {rest of basis}

• Mutual information combines one- and two-particle entanglement

��j = s� + sj � s�j
<latexit sha1_base64="S0lNhjy2N64GUNo3q6JkEhvzVMQ=">AAACFXicbVDLSsNAFJ3UV42vqMtuBosgiCWpom6EghvdVbAPaEOYTKfttJNJmJkUSujCr/AT3OoHuBO3rl37I07aLGzrgXs5nHMvd+b4EaNS2fa3kVtZXVvfyG+aW9s7u3vW/kFdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wNvUbIyIkDfmjGkfEDVCP0y7FSGnJswr3XkIHE/PGlB6Fp1B6A3imeyp6VtEu2VPAZeJkpAgyVD3rp90JcRwQrjBDUrYcO1JugoSimJGJ2Y4liRAeoh5pacpRQKSbTD8xgcda6cBuKHRxBafq340EBVKOA19PBkj15aKXiv95rVh1r92E8ihWhOPZoW7MoAphmgjsUEGwYmNNEBZUvxXiPhIIK53b/BVBRmkqzmIGy6ReLjnnpfLDRbFymeWTBwVwBE6AA65ABdyBKqgBDJ7AC3gFb8az8W58GJ+z0ZyR7RyCORhfv67JneI=</latexit>

• Two-orbital entropy again obtained from two-orbital-reduced density matrix
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s�j = �Tr��j log��j

• Two-orbital-reduced density matrix encodes pairwise entanglement

<latexit sha1_base64="kyXuunfTVNRgd/7nWTnAyyVaWhA="></latexit>

��j =

0
B@
1 � ��� � �jj + ��j�j 0 0 0

0 �jj � ��j�j ��j 0
0 ��j ��� � ��j�j 0
0 0 0 ��j�j

1
CA

two-body density required!
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MI for N=16 isotones using 16O core

• Neutron-neutron correlations affected by presence of protons

• Proton-neutron correlations suppressed but off-diagonal coupling present
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• Indications of BCS-type nn- and pp-pairing within the same shell (J=0, M=0, T=1)
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• MPS representation is superior to CI representation

Establish DMRG as scalable alternative to CI

• VS-DMRG: novel merging of complementary ab initio approaches

Next steps: SU(2)-invariant formulation + physics cases in heavy nuclei

Nuclear entanglement from quantum information theory 

• New perspective from orbital entanglement

Next steps: systematic understanding of collective nuclear effects

• Link nuclear phenomenology to QIT measures

• Robust convergence of observables with reduced uncertainties

Thank you for your attention!

• Superfluid correlations and shell closures related to entropies


