Spectroscopy
 from the valence-space density matrix renormalization group

PAINT 2024
Progress on Ab Initio Nuclear Theory

February 28th, 2024

Tichai et al., PLB (2023)
Tichai et al. (2024)

Alexander Tichai

TECHNISCHE
UNIVERSITAT
DARMSTADT

DMRG collaboration
Achim and Takayuki
K. Kapás, S. Knecht, A. Kruppa, Ö. Legeza, P. Moca, M. Werner, G. Zarand

Outline

> Theme:

Scalable ab initio simulations from tensor network approaches.

IMSRG and hybrid schemes

Density matrix renormalization group

Quantum information theory
Nuclear correlations
Many-body entanglement
Perspectives

Part I

The valence-space density matrix renormalization group

Advantages of the IMSRG

- Mild scaling with system size

Global study of ~ 700 nuclei from IMSRG(2)

Stroberg et al., PRL (202I)
see talks by
Matthias, Ragnar and Heiko!

- Non-perturbative resummation
- Flexibility: enables for targeting diverse set of observables
- Unitary transformation: easy interface with other methods
- Successfully merged with with many techniques in the past
(In-medium)
RPA, GCM, NCSM, ...

The valence-space IMSRG

- Non-perturbative decoupling of particlehole excitations from valence space

$$
H(s)=U^{\dagger}(s) H U(s)
$$

- Large no-core problem mapped to tractable active-space

Stroberg et al., Ann. Rev. Nucl. Part. Sci (2019)

Wave-function representations

- Many-body state is inefficiently represented in configuration interaction
complexity $\mathbf{d N}^{\mathbf{N}}$
(d: local dimension, e.g. $d=2$ for $s=/ / 2$ spin chain)

$$
|\Psi\rangle=\sum_{p_{1} \ldots p_{N}} \Psi_{p_{1} \ldots p_{N}}^{\downarrow}\left|p_{1} \cdots p_{N}\right\rangle
$$

- Exact rewriting of Cl wave function using matrix product state (MPS) ansatz

- Approximate MPS representation obtained by limiting intermediate summation
\longrightarrow bond dimension M

Density matrix renormalization group

White, PRL (199I)

- DMRG provides a variational procedure for the calculation of expectation values
- Rewriting expectation value in terms of MPS factors yields tensor network

- Limited by the number of orbitals and required bond dimension

DMRG vs. Cl: Many-body convergence

Tichai et al. (2024)

Orbital ordering

- Ordering problem: which arrangement yields most rapid convergence?

Presence of long-range correlations problematic

- 'Bad encodings': MPS must have large bond dimension to capture correlations
- Finding best ordering is complicated and requires exhausting all N ! possibilities
- Microscopic understanding of nuclear correlations can guide heuristics

$$
s_{i}=-n_{i} \log n_{i}-\bar{n}_{i} \log \bar{n}_{i}
$$

The role of the DMRG topology

- Random ordering gives bad results being trapped in local minimum
- BCS ordering: time-reversed states next to each other ($m_{j},-m_{j}$)
- Arrangement of j multiplets significantly impacts convergence
- Stable convergence of shell-model ordering but 500 keV off at large M
- Quasi-optimal ordering gives consistently best results

$$
\begin{gathered}
\left\{v: s_{1 / 2} d_{3 / 2} d_{5 / 2} g_{7 / 2} g_{9 / 2} ; \pi: f_{7 / 2} f_{5 / 2} p_{3 / 2} p_{1 / 2}\right\} \\
\text { Quasi-optimal ordering }
\end{gathered}
$$

Transitional nuclei at $\mathbf{N}=50$

Spectroscopy of $N=50$ isotones

- Ratios of $4^{+} / 2^{+}$excitation energies close to rigid-rotor limit

$$
E_{\mathrm{rot}}^{\star} \sim J(J+1)
$$

- Increase of $B(E 2)$ values towards open-shell ${ }^{74} \mathrm{Cr}$
- Rapid transition between single-particle-like and collective excitations
- Qualitative agreement with previous shell-model calculations

Nowacki et al., PRL (2016)

- Island-of-inversion: very low 0p0hcomponent in ground state

Future challenges: shape coexistence

Spectroscopy of $N=50$ isotones
see also Taniuchi et al., Nature (2019)

- Emergence of excited-state rotational band in ${ }^{78} \mathrm{Ni}$
- Second 0^{+}state comes out much higher at 5 MeV : IMSRG(3) and beyond?
- Complementary perspective on deformation from valence-space HFB

Nowacki et al., PRL (2016)

- Pronounced spherical minimum in ${ }^{78} \mathrm{Ni}$ but prolate minimum in ${ }^{74} \mathrm{Cr}$

Part II
 Entanglement and nuclear phenomenology

Orbital entanglement

see also Robin, Savage, Pillet, Gu, Sun, Hagen, Papenbrock, Pérez-Obiol, Rios, Menéndez,...

- Entanglement measures offer better understanding of (nuclear) correlation effects
- Partition orbital space: orbital reduced density matrices from partial trace

$$
\rho_{A}=\operatorname{Tr}_{B} \rho_{A B}
$$

(A, B two subsystems)

- Orbital entanglement from orbital-reduced density matrix: $A=\{i\}$ and $B=\{r e s t ~ o f ~ b a s i s\}$

$$
\rho_{i}=\left(\begin{array}{cc}
1-\gamma_{i i} & 0 \\
0 & \gamma_{i i}
\end{array}\right) \quad \begin{gathered}
\gamma: \text { reduced density matrix } \\
\text { (NOT orbital-reduced matrix!) }
\end{gathered}
$$

- Single-orbital entropy encodes nuclear correlation effects in a simple way

$$
s_{i}=-\operatorname{Tr} \rho_{i} \log \rho_{i} \leq \log 2
$$

- Total correlation obtained from sum of single-orbital entropies

$$
S_{\text {total }}=\sum_{i} s_{i}
$$

Entropies and shell structure

Total entropy in even-mass nickel isotopes

- Pronounced kink at ${ }^{78} \mathrm{Ni}$ hints at neutron shell closure (\sim dominated by HF)
- Larger bond dimensions required to converge ${ }^{78} \mathrm{Ni}$ excited state
- Agreement with conventional prediction based on 2^{+}excitation energies
- Deviation from experiment attributed to missing triples corrections: IMSRG(3)

Tichai et al., PLB (2023)

Orbital entanglement in ${ }^{74} \mathrm{Cr}$

Entropies in DMRG and Cl

Tichai et al. (2024)

- Orbital correlation are only slowly built up in Cl expansions
- Total amount of entanglement much higher in DMRG approach
- Subset of orbitals well captured at very low Cl truncations: $\mathrm{f}_{7 / 2}$
- Selected 6p-6h excitations (and more) are needed for high accuracy

DMRG efficiently captures important correlations

Pairwise correlations

- Better understanding of orbital correlation effects between two states

$$
\rho_{A B}=\operatorname{Tr}_{C} \rho_{A B C} \quad \begin{array}{ll}
A & =\{\text { orbit } i\} \\
B & =\{\text { orbit } j\} \\
& C=\{\text { rest of basis }\}
\end{array}
$$

- Two-orbital-reduced density matrix encodes pairwise entanglement

$$
\rho_{i j}=\left(\begin{array}{cccc}
1-\gamma_{i i}-\gamma_{j j}+\gamma_{i j i j} & 0 & 0 & 0 \\
0 & \gamma_{i j}-\gamma_{i j i j} & \gamma_{i j} & 0 \\
0 & \gamma_{i j} & \gamma_{i i}-\gamma_{i j i j} & 0 \\
0 & 0 & 0 & \gamma_{i j i j}
\end{array}\right)
$$

two-body density required!

- Two-orbital entropy again obtained from two-orbital-reduced density matrix

$$
s_{i j}=-\operatorname{Tr} \rho_{i j} \log \rho_{i j}
$$

- Mutual information combines one- and two-particle entanglement

$$
I_{i j}=s_{i}+s_{j}-s_{i j}
$$

Mutual information in sd-shell nuclei

MI for $N=16$ isotones using ${ }^{16} \mathrm{O}$ core

- Indications of BCS-type nn- and $p p$-pairing within the same shell $(J=0, M=0, T=I)$
- Neutron-neutron correlations affected by presence of protons
- Proton-neutron correlations suppressed but off-diagonal coupling present

Conclusions

Establish DMRG as scalable alternative to CI

- MPS representation is superior to Cl representation
- Robust convergence of observables with reduced uncertainties
- VS-DMRG: novel merging of complementary $a b$ initio approaches

Next steps: SU(2)-invarianecceceres in heavy nuclei
Thank you for your attention!

Nuclear entanglement from quantum information theory

- Link nuclear phenomenology to QIT measures
- New perspective from orbital entanglement
- Superfluid correlations and shell closures related to entropies

Next steps: systematic understanding of collective nuclear effects

