

DARMSTAD

Precision calculations of p-shell hypernuclei and beyond

Marco Knöll

Progress in Ab Initio Nuclear Theory, TRIUMF, 2024

Introduction to hypernuclei

- systems with strangeness
- composed of nucleons and hyperons
- \blacksquare lifetime $\approx 260~{\rm ps}$
- use generalized NCSM

Introduction to hypernuclei

- systems with strangeness
- composed of nucleons and hyperons
- lifetime $\approx 260 \text{ ps}$
- use generalized NCSM

challenges for ab initio calculations

- strangeness as additional degree of freedom
- account for different rest masses of baryons
- require realistic baryonic interactions

The hypernuclear Hamiltonian from chiral EFT

 $H = T + V_{\rm NN} + V_{\rm NNN}$

- $V_{\rm NN}$: non-local nucleon-nucleon potential at N³LO
- V_{NNN} : non-local three-nucleon force at N³LO

EMN, Phys. Rev. C 96 024004 (2017)

Hüther et al., Phys. Lett. B 808 135651 (2020)

The hypernuclear Hamiltonian from chiral EFT

$$H=T+V_{
m NN}+V_{
m NNN}+V_{
m YN}+V_{
m YNN}$$

- $V_{\rm NN}$: non-local nucleon-nucleon potential at N³LO
- V_{NNN} : non-local three-nucleon force at N³LO
- *V*_{YN}: non-local hyperon-nucleon interaction at LO

EMN, Phys. Rev. C 96 024004 (2017)

Hüther et al., Phys. Lett. B 808 135651 (2020)

Polinder et al., Nucl. Phys. A 779 244-266 (2006)

• *V*_{YNN}: no initial interaction included but SRG induced forces are considered

The hypernuclear Hamiltonian from chiral EFT

$$H = T + V_{\mathrm{NN}} + V_{\mathrm{NNN}} + V_{\mathrm{YN}} + V_{\mathrm{YNN}} + \Delta M$$

- *V*_{NN}: non-local nucleon-nucleon potential at N³LO
- V_{NNN} : non-local three-nucleon force at N³LO
- V_{YN}: non-local hyperon-nucleon interaction at LO

EMN, Phys. Rev. C 96 024004 (2017)

Hüther et al., Phys. Lett. B 808 135651 (2020)

Polinder et al., Nucl. Phys. A 779 244-266 (2006)

- V_{YNN}: no initial interaction included but SRG induced forces are considered
- ΔM : account for different rest masses

Hypernuclear no-core shell model

Gazda et al., Few-Body Syst. 55 857 (2014) Wirth et al., Phys. Rev. C 97 064315 (2018) Wirth, Roth, Phys. Rev. C 100 044313 (2019)

- expand Hamiltonian on finite Slater determinant basis and diagonalize
- include strangeness S in single-particle basis $|n(ls)jm_j, Stm_t\rangle$
- access larger model spaces through importance measure (IT-NCSM)
- inclusion of SRG induced YNN forces is key for accurate description

modified from Wirth, Roth, Phys. Rev. Lett. 117 182501 (2016) $_{1Li}$ $_{YN(600)}$ $_{4}$ $_{5}$ $_{6}$ $_{6}$ $_{7}$ [m¹] $_{7}$] $_{6}$ $_{7}$ [m¹] $_{7}$] $_{7}$ $_{7}$ [m¹]

The hyperon-nucleon interaction

• 35 YN scattering data for S-waves + $B_{\Lambda}(^{3}_{\Lambda}H)$

higher orders cannot be constrained on YN data only

practically no data for P-waves

Polinder et al., Nucl. Phys. A 779 244-266 (2006)

YN @ NLO

23 (10) LECs

 \Rightarrow

Haidenbauer et al., Eur. Phys. J. A 56 (3) 91 (2020)

Haidenbauer et al., Eur. Phys. J. A 59 (3) 63 (2023)

The hyperon-nucleon interaction

- 35 YN scattering data for S-waves + $B_{\Lambda} \begin{pmatrix} 3 \\ \Lambda \end{pmatrix}$
- practically no data for P-waves
- \Rightarrow higher orders cannot be constrained on YN data only

- hyperon in p-shell hypernuclei is overbound
- ⇒ use precise experimental ground-state and spectroscopic data as additional constraints

LEC sensitivity analysis

 5 LECs associated with particle species and partial waves:

 $C_{1S_0}^{\Lambda\Lambda}, C_{3S_1}^{\Lambda\Lambda}, C_{1S_0}^{\Sigma\Sigma}, C_{3S_1}^{\Sigma\Sigma}, C_{3S_1}^{\Lambda\Sigma}$

- vary single LECs by "natural" amounts
- most sensitive to $C_{3S_1}^{\Lambda\Lambda}$ followed by $C_{1S_0}^{\Lambda\Lambda}$
- limit optimization to these two LECs

 ΔE_1^* [MeV]

LEC sensitivity analysis

 5 LECs associated with particle species and partial waves:

 $C_{1}^{\Lambda\Lambda}$, $C_{3}^{\Lambda\Lambda}$, $C_{1}^{\Sigma\Sigma}$, $C_{3}^{\Sigma\Sigma}$, $C_{3}^{\Sigma\Sigma}$, $C_{3}^{\Lambda\Sigma}$

- vary single LECs by "natural" amounts
- most sensitive to $C_{3S_1}^{\Lambda\Lambda}$ followed by $C_{1S_0}^{\Lambda\Lambda}$
- limit optimization to these two LECs

Optimization of LECs

Feb. 29, 2024 | TU Darmstadt | Marco Knöll

$_{\Lambda}$ He and $_{\Lambda}$ Li isotopic chains

- error bands indicate many-body uncertainties
- improved description of light isotopes
- dependence on nucleonic interaction
- difficult experimental situation

$_{\Lambda}$ He and $_{\Lambda}$ Li isotopic chains

Feb. 29, 2024 | TU Darmstadt | Marco Knöll

Model-space extrapolation with artificial neural networks

prediction of converged value from sequences of calculations in accessible model spaces

Training an ANN

- train on converged Jacobi NCSM data for ²H, ³H, ⁴He
- training includes 36 different realistic NN+3N interactions from chiral EFT

Training an ANN

- train on converged Jacobi NCSM data for ²H, ³H, ⁴He
- training includes 36 different realistic NN+3N interactions from chiral EFT
- construct all possible samples

Training an ANN

- train on converged Jacobi NCSM data for ²H, ³H, ⁴He
- training includes 36 different realistic NN+3N interactions from chiral EFT
- construct all possible samples
- normalize data to [0, 1]
- train until deviation from training data is minimal

Statistical evaluation

- obtain multitude of predictions from
 - the construction of all possible evaluation samples
 - the evaluation with multiple ANNs
- fit Gaussian to extract mean prediction and uncertainty

Application to hypernuclei

- universality through ANN interpolation capabilities
- convergence pattern dominated by nucleonic interaction
- direct application to hypernuclei
- sufficiently large model-spaces required

Predicting hyperon-separation energies

$$\blacksquare B_{\Lambda} = B \begin{pmatrix} A \\ \Lambda \end{pmatrix} - B \begin{pmatrix} A-1 \\ \Lambda \end{pmatrix}$$

- convergence behavior of B_{Λ} is not constrained
- neural network approach can be applied to difference-based observables
- sufficiently large model spaces required for accurate prediction

modified from MK. Roth. Phys. Lett. B 846 138258 (2023)

Hyperonic natural orbitals

- increased reach through improved convergence
- optimized basis from second-order corrected density matrix
- accelerated convergence rate in NCSM calculations
- frequency independence

In-medium no-core shell model

- employ IM-SRG evolved Hamiltonian in subsequent NCSM calculation
- preprocessing to speed up convergence
- use Magnus formalism
- evolve operators consistently via BCH series

$$\frac{\mathrm{d}}{\mathrm{d}s}\hat{\Omega}(s) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \Big[\hat{\Omega}(s), \hat{\eta}(s)\Big]_k$$

$$\hat{O}(s) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\hat{\Omega}(s), \hat{O}(0) \right]_{k}$$

Strange attachments to the IM-NCSM

- NN-only
- limitation to small model spaces
- convergence for HO and NAT out of reach

- NN-only
- limitation to small model spaces
- convergence for HO and NAT out of reach

- NN-only
- limitation to small model spaces
- convergence for HO and NAT out of reach

- NN-only
- limitation to small model spaces
- convergence for HO and NAT out of reach

- NN-only
- limitation to small model spaces
- convergence for HO and NAT out of reach
- drastically faster convergence rate with increasing s
- enables ab initio calculations of medium-mass hypernuclei

Summary & outlook

- main bottleneck: lack of high-quality scattering data
 ⇒ poorly constrained YN interaction
- ground-state and spectroscopic data for p-shell hypernuclei yields additional constraints ⇒ significantly improved description @ LO
- ANNs allow for reliable extrapolation and many-body uncertainty estimates ⇒ crucial for precision calculations
- established convergence accelerators transfer to baryonic sector
- first steps towards ab intio description of medium-mass hypernuclei in the IM-NCSM framework
 - \Rightarrow much more work to be done ...

Thank you for listening!

thanks to my group and collaborators

M. Agel	Р.
P. Falk	L.
T. Gesser	Μ
K. Katzenmeier	R.

P. Lehnung L. Mertes M. Müller **R. Roth** L. Wagner C. Wenz T. Wolfgruber

computing time

Bundesministerium für Bildung und Forschung

