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Ab initio theory towards 
reliable neutrinoless 
double beta decay nuclear 
matrix elements
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Double beta decays

   Second order weak process
Only possible when single beta decay is energetically forbidden (or strongly disadvantaged). 
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2νββ vs 0νββ 
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Current calculations from phenomenological models have a large spread in results. 
Status of 0νββ-decay Matrix Elements

Values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, Sci. Bull. 10.1016 (2020); Brase et al, Phys. Rev. C 106, 034309  (2021)
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Current calculations from phenomenological models have large spread in results. 
Status of 0νββ-decay Matrix Elements

7

All models missing essential physics!

Impossible to assign theoretical uncertainties!

Values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, Sci. Bull. 10.1016 (2020); Brase et al, Phys. Rev. C 106, 034309  (2021)



Show how by using ab initio methods that 
rely on systematically improvable 
expansions, a coherent picture can be 
achieved for the NMEs.

Goal of the talk 8



▪ Obtaining a result: 

 

▪ Deriving an expression for the nuclear potential 
▪ Solving the nuclear many-body problem 
▪ Deriving consistent operators with the nuclear interactions 

▪ Obtaining a reliable result: 
▪ Uncertainty Quantification 

NME = ⟨ψf |O |ψi⟩

List of challenges
9
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▪ Obtaining a result: 

 

▪ Deriving an expression for the nuclear potential ( -EFT) 
▪ Solving the nuclear many-body problem (VS-IMSRG) 
▪ Deriving operators consistently with the nuclear interactions (EFTs) 

▪ Obtaining a reliable result: 
▪ Uncertainty quantification 

NME = ⟨ψf |O |ψi⟩
χ

List of challenges
14
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-EFTχ
Expansion order by order of the nuclear forces
Reproduces symmetries of low-energy QCD using nucleons as fields and mesons as force carriers. 

The different low energy coupling 
constants (LECs) are fitted to few 
nucleons data to absorb the effect 
of higher order terms

Machleidt and Entem, Phys. Rep., vol.503, no.1, pp.1–75  (2011)
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VS-IMSRG

   
Valence-Space In Medium Similarity Renormalization Group

Ĥ(0) Ĥ(s) = eΩ(s)Ĥ(0)e−Ω(s)

16

Tsukiyama et al., Phys. Rev. C 85, 061304(R) (2012)
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VS-IMSRG

   
Valence-Space In Medium Similarity Renormalization Group

Charlie Payne, Master’sThesis, UBC (2018)
p+ n0
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VS-IMSRG

   
Valence-Space In Medium Similarity Renormalization Group

Courtesy, S. R. 
Stroberg

18
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VS-IMSRG

   
Valence-Space In Medium Similarity Renormalization Group

Truncations
• emax: Truncations for 1-body states. Is given by 2n + l.
• E3max: Truncations for 3-body forces. Optimally E3max = 3 x emax.
• IMSRG(2): All operators are truncated to the 2-body level.

19
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The EFT ladder for the operators

   

Cirigliano et al. J. Phys. G: Nucl. Part. Phys. 49 120502 (2022)
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Obtaining a result

22



D
is

co
ve

ry
, 

ac
ce

le
ra

te
d

Results with 5 different input Hamiltonians to study uncertainty from interaction choice. 

Things to add: valence-space variation, two-body currents, IMSRG(3), …

Ab Initio 0νββ Decay: 48Ca, 76Ge and 82Se

Belley, et al., PRL126.042502

23
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Ab Initio 0νββ Decay: 130Te, 136Xe
100Mo, 130Te, 136Xe: major players in global searches with Cupid, SNO+, CUORE and nEXO.
Increased E3max capabilities allow first converged ab initio calculations [EM1.8/2.0, , N3LOLNL]. ΔGO 24

Belley, et al., arXiv:2307.15156 

https://arxiv.org/abs/2307.15156
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0νββ-decay Matrix Elements: The new picture

25



▪ Obtaining a result: 

 

▪ Deriving an expression for the nuclear potential ( -EFT) 
▪ Solving the nuclear many-body problem (VS-IMSRG) 
▪ Deriving operators consistently with the nuclear interactions (EFTs) 

▪ Obtaining a reliable result: 
▪ Uncertainty quantification 

NME = ⟨ψf |O |ψi⟩
χ

List of challenges
26



Uncertainty 
Quantification
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Propagating the LECs error

28

Recall that the nuclear potential depends on a set of LECs : 

 

that are fitted to NN and few nucleons data,  i.e.  each LEC has an uncertainty 
 associated with it.

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα
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Propagating the LECs error

29

Recall that the nuclear potential depends on a set of LECs : 

 

that are fitted to NN and few nucleons data,  i.e.  each LEC has an uncertainty 
 associated with it. 

How to propagate  to ?

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα

δα δM0νββ
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Propagating the LECs error

30

Recall that the nuclear potential depends on a set of LECs : 

 

that are fitted to NN and few nucleons data,  i.e.  each LEC has an uncertainty 
 associated with it. 

How to propagate  to ? 

Bayesian statistics!

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα

δα δM0νββ
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Bayesian approach

prob(y |yk, I ) ∝ prob(yk |y, I ) × prob(y | I )

We read  as 
probability of A given B

prob(A |B)
Value of the 

nuclear matrix 
elements

(what we are 
interested in)

Different values 
obtained with 

different 
interactions/

methods

Any other relevant 
information we 

have beforehand

Posterior distribution
Probability distribution for the 
final value given the data 
and our previous knowledge 
(what we want to obtain).

For finite samples, we use 
sampling/importance 
resampling to obtain the final 
PDF.

Likelihood
Probability that this sample gives a 
result that is representative of 
experimental values.

Chosen to be a multivariate normal 
centred at the experimental value 
for few observables we have data 
on (calibrating observables).

Prior
Assume a uniform prior for low 
energy constants of natural 
size. Then use history 
matching to remove 
implausible samples from the 
set. Assume each of the 
remaining samples to be as 
likely as the others.

31
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Procedure for UQ in the bayesian approach

1. Generate a set of LECs samples equally distributed in a reasonable range.

2. Using History Matching, reduce the number of samples in the set to “non-implausible” samples.

3. These “non-implausible” samples are now your prior and are taken to be equally probable.

4. Assign a likelihood to each sample by comparing their performance for certain calibrating observables. 
To give sensible estimate of the target observable, the calibrating observables should correlate with the 
target observable.

5. Resample the LECs a large number of times (>106) with probability of being sampled given by the 
likelihood of the sample (Sampling/Importance Resampling).

6. Evaluate the target observables with the resampled set to obtain a posterior predictive distribution. 

7. Other sources of error can be sampled and added independently in the previous step. Those are taken 
to be normally distributed. 

32
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Procedure for UQ in the bayesian approach.

1. Generate a set of LECs samples equally distributed in a reasonable range.

2. Using History Matching, reduce the number of samples in the set to “non-implausible” samples.

3. These “non-implausible” samples are now your prior and are taken to be equally probable.

4. Assign a likelihood to each sample by comparing their performance for certain calibrating observables. 
To give sensible estimate of the target observable, the calibrating observables should correlate with the 
target observable.

5. Resample the LECs a large number of times (>106) with probability of being sampled given by the 
likelihood of the sample. (Sampling/Importance Resampling)

6. Evaluate the target observables with the resampled set to obtain a posterior predictive distribution. 

7. Other sources of error can be sampled and added independently in the previous step. Those are taken 
to be normally distributed. 

33

The catch

Need to be able to compute the observables for all the non-
implausible samples.

Due to the very large cost of many-body methods this 
becomes very quickly non-feasible as the number of samples 

grows.
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Using Gaussian Process as an emulator 

• Idea behind Gaussian Process regressions is to assume that the distribution of the observable we want 
to fit is Gaussian:

where  is a mean function and  is the covariance matrix between the inputs.

• Want to infer the joint distribution of potentially unobserved Y* points and the observed points Y. This 
can be done via a property of Gaussian distribution called Conditioning, i.e.:

.

f(x) = 𝒩(μ, K(x, x))
μ K(x, x)

PY*|Y ∼ 𝒩 (μ*Y + ΣX*XΣ−1
XX(Y − μY), ΣX*X* − ΣX*XΣ−1

XXΣXX*)

34



D
is

co
ve

ry
, 

ac
ce

le
ra

te
d

Using Gaussian Process as an emulator 

• Idea behind Gaussian Process regressions is to assume that the distribution of the observable we want 
to fit is Gaussian:

where  is a mean function and  is the covariance matrix between the inputs.

• Want to infer the distribution of potentially unobserved Y* points from the observed points Y. This can be 
done via a property of Gaussian distribution called Conditioning, i.e.:

.

f(x) = 𝒩(μ, K(x, x))
μ K(x, x)

PY*|Y ∼ 𝒩 (0+ΣX*XΣ−1
XX(Y−0), ΣX*X* − ΣX*XΣ−1

XXΣXX*)

35

Normalizing inputs Only need to optimize 
hyperparameters of !K(x, x)
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Using Gaussian Process as an emulator 

36

König, et al., PLB 2020.135814 
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Using Gaussian Process as an emulator 

• Multi-Tasks Gaussian Process: Uses multiple correlated outputs from the same 
inputs by defining the kernel as . This allows us to increase the 
number of data points without needing to do more expensive calculations.

• Multi-Fidelity Gaussian Process: Uses few data points of high fidelity (full IMSRG 
calculations) and many data points of low fidelity (e.g. Hartree-Fock results, lower 
emax). The difference function is fitted by a Gaussian Process in order to predict 
the value of full calculations using the low fidelity data points. This assumes a 
linear scaling for between the low- and high-fidelity calculations.

Kinputs ⊗ Koutputs

37
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The MM-DGP algorithm

• When the relation between low-fidelity and high-fidelity 
data is complicated, the simple multi-fidelity approach 
does not produce good results.

• Deep Gaussian Processes [1] link multiple Gaussian 
Processes inside a architecture similar to neural 
network to improve results.

• This can be used to model the difference function 
between the low- and high-fidelity by including outputs 
of the previous fidelity as an input of higher fidelity by 
taking a kernel of the form:

• This was developed for single-output Gaussian 
Processes and we have adapted it for multi-output 
case, creating the MM-DGP: Multi-output Multi-fidelity 
Deep Gaussian Process.

K(x, x) = k(x, x) ⋅ k( fprev(x), fprev(x)) + kbias(x, x)

[1] Kurt Cutajar, Mark Pullin, Andreas Damianou, Neil Lawrence, Javier González arXiv:1903.07320  (2021).


38

https://arxiv.org/search/stat?searchtype=author&query=Cutajar%2C+K
https://arxiv.org/search/stat?searchtype=author&query=Pullin%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Damianou%2C+A
https://arxiv.org/search/stat?searchtype=author&query=Lawrence%2C+N
https://arxiv.org/search/stat?searchtype=author&query=Gonz%C3%A1lez%2C+J
https://arxiv.org/abs/1903.07320
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Using -full chiral EFT interactions at N2LO:Δ

The MM-DGP algorithm: Energies

Belley, Pitcher et al. in prep.

76Ge

Root Mean Square 
Error = 11 MeV 

39

50 training points



D
is

co
ve

ry
, 

ac
ce

le
ra

te
d

The MM-DGP algorithm: 0νββ NMEs
Using -full chiral EFT interactions at N2LO:Δ

Belley, Pitcher et al. in prep.

76Ge

40

50 training points

Root Mean Square 
Error = 0.13
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The MM-DGP algorithm: GSA

M0ν
LGround state energies

Belley, Pitcher et al. in prep.Consistent with results of Coupled Cluster and 
physics based emulator

NMEs are mostly 
dependent on a 
single LEC.

41



D
is

co
ve

ry
, 

ac
ce

le
ra

te
d

Correlation between observables
In 76Ge:

Only correlation seen in multiple nuclei is with the 
unobserved double Gamow-Teller transition NME.

Belley et al., arXiv:2210.05809
42

https://arxiv.org/abs/2210.05809
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Correlation with phase shifts

Belley, Pitcher, et al. in prep.

43

Strong correlation for energies > 50 MeV

The size of matrix elements is mostly 
constrained by the interaction between 
the two nucleons that undergo the 
decay, given they are close enough from 
each other. 

⇒
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Posterior distribution of the NMEs

• Use 8188 “non-implausible” samples obtain by Jiang, W. G. et al. (arXiv:2212.13216).

• Many-body problem is “solved” with the MM-DGP.

• Consider all sources of uncertainties by taking:

where the ’s are the errors coming from different sources and are assumed to be 
normally distributed and independent.

• Interactions are weighted by the  neutron-proton phase shifts at 50 MeV and 
observables for mass A=2-4,16.

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

ϵ

1S0

44

https://arxiv.org/abs/2212.13216
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Comparing with other interactions

45

Belley, et al., arXiv:2308.15634
 

M0νββ = 2.60+1.28
−1.36

https://arxiv.org/abs/2308.15634
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0νββ-decay Matrix Elements: The complete picture

46
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Ab Initio 0νββ Decay: Effect on experimental limits

47

Experimental limits: GERDA (76Ge) Phys. Rev. Lett. 125, 252502, CUPID-Mo (100100) Eur. Phys. J. C 82  11, 1033, 
CUORE(130Te) Nature  604,  53–58 and Kamland Zen (136Xe) Phys. Rev. Lett. 130, 051801.
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Ab Initio 0νββ Decay: Effect on future reach

48

Expected limits: LEGEND (76Ge) arXiv:2107.11462, CUPID (100100) arXiv:1907.09376, 
SNO+(130Te) arXiv:2104.11687and nEXO (136Xe) J. Phys .G 49 1, 015104.

https://arxiv.org/abs/2107.11462
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1. Computed first ever ab initio NMEs of  
isotopes of  experimental interest as a first 
step towards computing NMEs with reliable 
theoretical uncertainties. 

2. Computed NMEs with multiple interactions 
for  48Ca, 76Ge, 82Se, 100Mo, 130Te and 136Xe. 

3. Studied effects of  the contact term on the 
NMEs. 

4. Developed an emulator for the VS-IMSRG 
based on Gaussian Processes. 

5. Obtained the first statistical uncertainty 
for the NMEs which includes all sources of  
errors in the calculation.

Summary
49
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Questions?

abelley@triumf.ca

50


