New Opportunities for Nuclear Structure Calculations for BSM Physics

Ayala Glick-Magid

INSTITUTE for NUCLEAR THEORY

PAINT 2024

Standard Model (SM)

Fundamental Forces

Elementary Particles

≈125.09 GeV/c²

g

Ζ

W

Η

BOSON

Higgs

SONS

Ö

GAUGE

 (MeV/c^2)

W boson mass

Deviations from the SM at high precision: muon g-2, W mass

Searches for BSM physics

Astronomical Frontier
Astronomy

https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB © ESA and the Planck Collaboration (License: <u>CC-BY-SA-4.0</u>)

> Dark Matter

E.g.

High Energy Frontier Particles Physics

Lucas Taylor / CERN - <u>http://cdsweb.cern.ch/record/628469</u> © 1997-2022 CERN (License: <u>CC-BY-SA-4.0</u>)

Lepton Flavor Violation

Precision Frontier Nuclear Physics

Mardor et al., Eur. Phys. J. A 54, 91 (2018)

New Weak Interactions

Searches for BSM physics

Astronomy

https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB © ESA and the Planck Collaboration (License: <u>CC-BY-SA-4.0</u>)

Particles Physics

Lucas Taylor / CERN - <u>http://cdsweb.cern.ch/record/628469</u> © 1997-2022 CERN (License: <u>CC-BY-SA-4.0</u>)

Precision Frontier Nuclear Physics

Mardor et al., Eur. Phys. J. A 54, 91 (2018)

New Weak Interactions

> Dark Matter

tter > Lepton Flavor Violation

Searches for BSM physics

✓ Introduction

https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB © ESA and the Planck Collaboration (License: <u>CC-BY-SA-4.0</u>)

Lucas Taylor / CERN - <u>http://cdsweb.cern.ch/record/628469</u> © 1997-2022 CERN (License: <u>CC-BY-SA-4.0</u>)

Mardor et al., Eur. Phys. J. A 54, 91 (2018)

New Weak Interactions

> Dark Matter

tter >> Lepton Flavor Violation with nuclei...

Dark Matter direct detection

Dark Matter Direct Detection

Promising candidates - WIMPs: Weakly-Interacting Massive Particles

Challenge - Direct detection:

q - momentum transfer

8

Measuring WIMP scattering off nuclei on detectors

Nuclear matrix elements & structure factors

Detection capabilities: $q \sim 100 MeV/c$

The structure of the coupling is determined only by symmetry considerations

N. Anand, A. L. Fitzpatrick, W. C. Haxton, Phys.Rev.C89:065501 (2014) A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, J.Cosmol.Astropart.Phys2013(02):004 (2013)

WIMPs scattering off nuclei

Low energy reaction of WIMPs with nucleons

Non-Relativistic Nuclear Reduction: contact interaction between WIMP's & Nucleon's currents

WIMPs scattering off nuclei

Non-Relativistic Nuclear Reduction

 $\mathcal{L}_{int} \sim \overline{\chi} O_{\chi} \chi N O_N N$

 $2 \times 2 = 4$ $4 \times 4 = 16$ Scalar $\langle p(p_p) | \bar{u} d | n(p_n) \rangle = g_S(q^2) \bar{u}_p(p_p) u_n(p_n)$ $\overline{N}N$ $\overline{N}\gamma^5 N$ Pseudoscalar $\langle p(p_p) | \bar{u} \gamma_5 d | n(p_n) \rangle = g_P(q^2) \bar{u}_p(p_p) \gamma_5 u_n(p_n)$ m_N Vector $\langle p(p_p)|\bar{u}\gamma_{\mu}d|n(p_n)\rangle = \bar{u}_p(p_p) \left[g_V(q^2)\gamma_{\mu} - i\frac{\tilde{g}_{T(V)}(q^2)}{2M_N}\sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_S(q^2)}{2M_N}q_{\mu}\right]u_n(p_n)$ Axial Vector $\langle p(p_p) | \bar{u} \gamma_\mu \gamma_5 d | n(p_n) \rangle = \bar{u}_p(p_p) \left[g_A(q^2) \gamma_\mu - i \frac{\tilde{g}_{T(A)}(q^2)}{2M_N} \sigma_{\mu\nu} q^\nu + \frac{\tilde{g}_P(q^2)}{2M_N} q_\mu \right] \gamma_5 u_n(p_n) \right]$

 $\overline{N} \frac{P^{\mu}}{M} N$ $\overline{N}\sigma^{\mu\nu}\frac{q_{\nu}}{M}N$ $\frac{m_N}{\overline{N}} \frac{P^{\mu}}{m_N} \gamma^5 N$ $\overline{N} \gamma^{\mu} \gamma^5 N$

And similar terms for the WIMPs

WIMPs scattering off nuclei

Non-Relativistic Nuclear Reduction

$$\sum_{int} \sim \bar{\chi} O_{\chi} \chi \, \bar{N} O_N N \approx \sum_{i=1}^{16} c_i O_i \bar{\chi} \chi \bar{N} N$$

 ${O_i}_{i=1}^{16}$ - 16 non-relativistic operators

built of 4 three-vectors:

 $\frac{i\vec{q}}{m_N}$

$$\vec{v}^{\perp} \equiv \frac{\vec{P}}{2m\chi} - \frac{\vec{K}}{2m_N}$$

 $\blacktriangleright \vec{S}_{\chi}, \vec{S}_N$

Missing tensor couplings

A. L. Fitzpatrick, W. Haxton et al., J.Cosmol. Astropart. Phys 2013(02):004 (2013)

Theory: C.N. Yang and T.D. Lee (Nobel 1957)

Experiment: C.S. Wu: Parity violation in nuclear β -decays \Rightarrow Weak SM structure: "V - A"

To identify the interaction's nature, we need to know the operators & symmetries involved in each of S, P, V, A, T

How do we find the tensor NR EFT?

AGM & Gazit, PRD 2023

DM Tensor Interactions

j	$\mathcal{L}^{j}_{\mathrm{int}}$	Nonrelativistic Reduction	$\Sigma_i c_i \mathcal{O}_i$
21	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\sigma_{\mu\nu}N$	$8\frac{\vec{\sigma}_{\chi}}{2}\cdot\frac{\vec{\sigma}_{N}}{2}+O\left(\frac{1}{m^{2}}\right)$	$8\mathcal{O}_4$
22	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\left(\frac{q_{\mu}}{m_{M}}\gamma_{\nu}-\frac{q_{\nu}}{m_{M}}\gamma_{\mu}\right)N$	$-\frac{iq^2}{m\chi m_M} 1_{\chi} 1_N - \frac{4iq^2}{m_N m_M} \left(\frac{\vec{\sigma}_{\chi}}{2} \cdot \frac{\vec{\sigma}_N}{2}\right)$	$-i\frac{\vec{q}^2}{m_M m_\chi}\mathcal{O}_1 - 4i\frac{\vec{q}^2}{m_M m_N}\mathcal{O}_1$
		$-\frac{4}{m_M}\frac{\vec{\sigma}_{\chi}}{2}\cdot\left(\vec{q}\times\vec{v}^{\perp}\right)+\frac{4i}{m_Nm_M}\left(\frac{\vec{\sigma}_N}{2}\cdot\vec{q}\right)\left(\frac{\vec{\sigma}_{\chi}}{2}\cdot\vec{q}\right)+O\left(\frac{1}{m^3}\right)$	$+4i\frac{m_N}{m_M}\mathcal{O}_5+4i\frac{m_N}{m_M}\mathcal{O}_6$
23	$\bar{\chi}\sigma^{\mu u}\chi\bar{N}\left(rac{q^{\mu}}{m_{M}}rac{K^{ u}}{m_{M}}-rac{q^{ u}}{m_{M}}rac{K^{\mu}}{m_{M}} ight)N$	$-2i\frac{m_N}{m\chi}\frac{\vec{q}^2}{m_M^2}1_{\chi}1_N - 8\frac{m_N}{m_M^2}\frac{\vec{\sigma}_{\chi}}{2}\cdot\left(\vec{q}\times\vec{v}^{\perp}\right) + O\left(\frac{1}{m^4}\right)$	$-2i\frac{m_N}{m_\chi}\frac{\bar{q}^2}{m_M^2}\mathcal{O}_1 + 8i\frac{m_N^2}{m_M^2}\mathcal{O}_5$
24	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\left(\gamma\mu\frac{\phi}{m_M}\gamma\nu-\gamma\nu\frac{\phi}{m_M}\gamma\mu\right)N$	$8i\left(\frac{\vec{\sigma}_{\chi}}{2}\cdot\frac{\vec{q}}{m_M}\right)\left(\frac{\vec{\sigma}_N}{2}\cdot\vec{v}^{\perp}\right)+O\left(\frac{1}{m^3}\right)$	$8 \frac{m_N}{m_M} \mathcal{O}_{14}$
25	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \gamma^{\nu} - \frac{q^{\nu}}{m_M} \gamma^{\mu} \right) \chi \bar{N} \sigma_{\mu\nu} N$	$\frac{iq^2}{m_N m_M} 1_{\chi} 1_N + \frac{4}{m_M} \frac{\vec{\sigma}_N}{2} \cdot \left(\vec{q} \times \vec{v}^{\perp} \right)$	$i \frac{q^2}{m_N m_M} \mathcal{O}_1 - 4i \frac{m_N}{m_M} \mathcal{O}_3$
		$\left + \frac{4i}{m\chi m_M} \vec{q}^2 \left(\frac{\vec{\sigma}_{\chi}}{2} \cdot \frac{\vec{\sigma}_N}{2} \right) - \frac{4i}{m\chi m_M} \left(\vec{q} \cdot \frac{\vec{\sigma}_{\chi}}{2} \right) \left(\vec{q} \cdot \frac{\vec{\sigma}_N}{2} \right) + O\left(\frac{1}{m^4} \right) \right $	$+4i\frac{\bar{q}^2}{m\chi m_M}\mathcal{O}_4-4i\frac{m_N^2}{m\chi m_M}\mathcal{O}_4$
26	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \gamma^{\nu} - \frac{q^{\nu}}{m_M} \gamma^{\mu} \right) \chi \bar{N} \left(\frac{q_{\mu}}{m_M} \gamma_{\nu} - \frac{q_{\nu}}{m_M} \gamma_{\mu} \right) N$	$-\frac{iq^2}{m\chi m_M} 1\chi 1_N - \frac{4iq^2}{m_N m_M} \left(\frac{\vec{\sigma}\chi}{2} \cdot \frac{\vec{\sigma}_N}{2}\right)$	$-i\frac{q^2}{m\chi m_M}\mathcal{O}_1 - 4i\frac{q^2}{m_N m_M}\mathcal{O}_2$
		$-\frac{4}{m_M}\frac{\delta\chi}{2}\cdot\left(\vec{q}\times\vec{v}^{\perp}\right)+\frac{4i}{m_Nm_M}\left(\frac{\delta_N}{2}\cdot\vec{q}\right)\left(\frac{\delta\chi}{2}\cdot\vec{q}\right)+O\left(\frac{1}{m^4}\right)$	$+4i\frac{m_N}{m_M}\mathcal{O}_5+4i\frac{m_N}{m_M}\mathcal{O}_6$
27	$\bar{\chi}\left(\frac{q^{\mu}}{m_M}\gamma^{\nu}-\frac{q^{\nu}}{m_M}\gamma^{\mu}\right)\chi\bar{N}\left(\frac{q^{\mu}}{m_M}\frac{K^{\nu}}{m_M}-\frac{q^{\nu}}{m_M}\frac{K^{\mu}}{m_M}\right)N$	$-4\frac{m_N}{m_M}\frac{q^2}{m_M^2}1\chi 1_N + O\left(\frac{1}{m^4}\right)$	$-4rac{m_N}{m_M}rac{q^2}{m_M^2}\mathcal{O}_1$
28	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \gamma^{\nu} - \frac{q^{\nu}}{m_M} \gamma^{\mu} \right) \chi \bar{N} \left(\gamma_{\mu} \frac{q}{m_M} \gamma_{\nu} - \gamma_{\nu} \frac{q}{m_M} \gamma_{\mu} \right) N$	$O\left(\frac{1}{m^6}\right)$	
29	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \frac{P^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{P^{\mu}}{m_M} \right) \chi \bar{N} \sigma_{\mu\nu} N$	$2i\frac{m_{\chi}}{m_{N}}\frac{\vec{q}^{2}}{m_{M}^{2}}1\chi1_{N} + 8\frac{m_{\chi}}{m_{M}^{2}}\frac{\vec{\sigma}_{N}}{2}\cdot\left(\vec{q}\times\vec{v}^{\perp}\right) + O\left(\frac{1}{m^{4}}\right)$	$2i\frac{m\chi}{m_N}\frac{\vec{q}^2}{m_M^2}\mathcal{O}_1 - 8i\frac{m\chi m_N}{m_M^2}\mathcal{O}_3$
30	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \frac{P^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{P^{\mu}}{m_M} \right) \chi \bar{N} \left(\frac{q_{\mu}}{m_M} \gamma_{\nu} - \frac{q_{\nu}}{m_M} \gamma_{\mu} \right) N$	$-4\frac{m\chi}{m_M}\frac{q^2}{m_M^2}1\chi 1_N + O\left(\frac{1}{m^4}\right)$	$-4\frac{m\chi}{m_M}\frac{q^2}{m_M^2}\mathcal{O}_1$
31	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \frac{P^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{P^{\mu}}{m_M} \right) \chi \bar{N} \left(\frac{q^{\mu}}{m_M} \frac{K^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{K^{\mu}}{m_M} \right) N$	$-8\frac{m\chi m_N}{m_M^2}\frac{\vec{q}^2}{m_M^2}1_{\chi}1_N + O\left(\frac{1}{m^4}\right)$	$-8\frac{m\chi m_N}{m_M^2}\frac{\bar{q}^2}{m_M^2}\mathcal{O}_1$
32	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \frac{P^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{P^{\mu}}{m_M} \right) \chi \bar{N} \left(\gamma_{\mu} \frac{q}{m_M} \gamma_{\nu} - \gamma_{\nu} \frac{q}{m_M} \gamma_{\mu} \right) N$	$O\left(\frac{1}{m^6}\right)$	
33	$\bar{\chi} \left(\gamma^{\mu} \frac{d}{m_M^{\prime}} \gamma^{\nu} - \gamma^{\nu} \frac{d}{m_M^{\prime}} \gamma^{\mu} \right) \chi \bar{N} \sigma_{\mu\nu} N$	$-8i\left(\frac{\vec{\sigma}_N}{2}\cdot\frac{\vec{q}}{m_M}\right)\left(\frac{\vec{\sigma}_\chi}{2}\cdot\vec{v}^\perp\right)+O\left(\frac{1}{m^3}\right)$	$-8\frac{m_N}{m_M}\mathcal{O}_{13}$
34	$\bar{\chi} \left(\gamma^{\mu} \frac{d}{m_M} \gamma^{\nu} - \gamma^{\nu} \frac{d}{m_M} \gamma^{\mu} \right) \chi \bar{N} \left(\frac{q_{\mu}}{m_M} \gamma_{\nu} - \frac{q_{\nu}}{m_M} \gamma_{\mu} \right) N$	$O\left(\frac{1}{m^6}\right)$	
35	$\overline{\chi}\left(\gamma^{\mu}\frac{d}{m_{M}^{\prime}}\gamma^{\nu}-\gamma^{\nu}\frac{d}{m_{M}^{\prime}}\gamma^{\mu}\right)\chi\bar{N}\left(\frac{q^{\mu}}{m_{M}}\frac{K^{\nu}}{m_{M}^{\prime}}-\frac{q^{\nu}}{m_{M}}\frac{K^{\mu}}{m_{M}^{\prime}}\right)N$	$O\left(\frac{1}{m^6}\right)$	
36	$\bar{\chi}\left(\gamma^{\mu}\frac{d}{m_{M}^{\prime}}\gamma^{\nu}-\gamma^{\nu}\frac{d}{m_{M}^{\prime}}\gamma^{\mu}\right)\chi\bar{N}\left(\gamma_{\mu}\frac{d}{m_{M}^{\prime}}\gamma_{\nu}-\gamma_{\nu}\frac{d}{m_{M}^{\prime}}\gamma_{\mu}\right)N$	$\frac{32}{m_{M}^2} \left[q^2 \left(\frac{\sigma_{\chi}}{2} \cdot \frac{\sigma_N}{2} \right) - \left(\frac{\sigma_N}{2} \cdot \vec{q} \right) \left(\frac{\sigma_{\chi}}{2} \cdot \vec{q} \right) \right] + O\left(\frac{1}{m^4} \right)$	$32\frac{q^2}{m_{M}^2}\mathcal{O}_4 - 32\frac{m_N^2}{m_{M}^2}\mathcal{O}_6$

To identify the interaction's nature we need to know the operators & symmetries involved in each of S, P, V, A, T

$$\mathcal{O}_{1} \equiv 1_{\chi} 1_{N},$$

$$\mathcal{O}_{3} \equiv i \vec{S}_{N} \cdot \left(\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right),$$

$$\mathcal{O}_{4} \equiv \vec{S}_{\chi} \cdot \vec{S}_{N},$$

$$\mathcal{O}_{5} \equiv i \vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right),$$

$$\mathcal{O}_{6} \equiv \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right),$$

$$\mathcal{O}_{13} \equiv i \left(\vec{S}_{\chi} \cdot \vec{v}^{\perp}\right) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right),$$

$$\mathcal{O}_{14} \equiv i \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right) \left(\vec{S}_{N} \cdot \vec{v}^{\perp}\right).$$

AGM, arXiv:2312.08339

Lepton Flavor Violation $\mu \rightarrow e$ conversion

Beyond Standard Model (BSM)

Lepton Flavor Violation

Elementary Particles

Beyond Standard Model (BSM)

Charged Lepton Flavor Violation

Elementary Particles

Beyond Standard Model (BSM) with nuclei...

Elementary Particles

(Credit: symmetry magazine)

Charged Lepton Flavor Violation

Beyond Standard Model (BSM) with nuclei...

$\mu \rightarrow e$ conversion

Charged Lepton Flavor Violation

Elementary Particles

TABLE IX. Existing limits on branching ratios for $\mu \rightarrow e$ conversion, taken from the tabulation of [75].

Process	Limit	Lab/Reference
$\mu^- + {}^{32}S \rightarrow e^- + {}^{32}S$	7×10^{-11}	SIN [76]
μ^- +Ti $\rightarrow e^-$ +Ti	1.6×10^{-11}	TRIUMF [77]
μ^- +Ti $\rightarrow e^-$ +Ti	4.6×10^{-12}	TRIUMF [78]
μ^- +Ti $\rightarrow e^-$ +Ti	4.3×10^{-12}	PSI [79]
μ^- +Ti $\rightarrow e^-$ +Ti	6.1×10^{-13}	PSI [80]
μ^- +Cu $\rightarrow e^-$ +Cu	1.6×10^{-8}	SREL [81]
μ^- +Au $\rightarrow e^-$ +Au	7×10^{-13}	PSI [82]
μ^- +Pb $\rightarrow e^-$ +Pb	4.9×10^{-10}	TRIUMF [78]
μ^- +Pb $\rightarrow e^-$ +Pb	4.6×10^{-11}	PSI [83]

branching ratio with respect to muon capture in the same nucleus

• Future experiments: mu2e @ Fermilab, COMET @ J-PARC $(^{27}Al) \sim 10^{-17}$

$\mu \rightarrow e$ conversion

This is what we start with.

This is the process we are looking for.

W. C. Haxton, E. Rule, K. McElvain, M. J. Ramsey-Musolf. Phys. Rev. C, 107:035504 (2023)

 $\blacktriangleright q \sim m_{\mu}$

The electron is "fully relativistic"

$\mu \rightarrow e$ conversion

This is what we start with.

This is the process we are looking for.

TABLE IX. Existing limits on branching ratios for $\mu \rightarrow e$ conversion, taken from the tabulation of [75].

Process	Limit	Lab/Reference
$\mu^- + {}^{32}S \rightarrow e^- + {}^{32}S$	7×10^{-11}	SIN [76]
μ^- +Ti $\rightarrow e^-$ +Ti	1.6×10^{-11}	TRIUMF [77]
μ^- +Ti $\rightarrow e^-$ +Ti	4.6×10^{-12}	TRIUMF [78]
μ^- +Ti $\rightarrow e^-$ +Ti	4.3×10^{-12}	PSI [79]
μ^- +Ti $\rightarrow e^-$ +Ti	6.1×10^{-13}	PSI [80]
$\mu^-+Cu \rightarrow e^-+Cu$	1.6×10^{-8}	SREL [81]
μ^- +Au $\rightarrow e^-$ +Au	7×10^{-13}	PSI [82]
$\mu^- + Pb \rightarrow e^- + Pb$	4.9×10^{-10}	TRIUMF [78]
μ^- +Pb $\rightarrow e^-$ +Pb	4.6×10^{-11}	PSI [83]

branching ratio with respect to muon capture in the same nucleus

A orders of magnitude enhancementi Future experiments: mu2e @ Fermilab, COMET @ J-PARC $(^{27}\text{Al}) \sim 10^{-17}$

NREFT Missing tensor couplings

$\mu \rightarrow e$ Tensor Interactions

New operators! Easier for identifying the nature of the CLFV

39

Ĵ	$\mathcal{L}_{\mathrm{int}}$	Paul Operator Reduction	$\Sigma_i c_i O_i$	
21	$\bar{\chi}_e \sigma^{\mu u} \chi_\mu \bar{N} \sigma_{\mu u} N$	$-\frac{q}{m_N}1_L1_N - 2i1_L\hat{q}\cdot(\vec{v}_N\times\vec{\sigma}_N) + 2\vec{\sigma}_L\cdot\vec{\sigma}_N + 2\vec{\sigma}_L\cdot[\hat{q}\times(\vec{v}_N\times\vec{\sigma}_N)] $	$-\frac{q}{m_N}\mathcal{O}_1 - 2\mathcal{O}_3 + 2\mathcal{O}_4 - 2i\mathcal{O}_{13}$	$\mathcal{O}_1 = 1_L 1_N$
		$+i\left(\hat{q}\times\vec{v}_{\mu}\right)\cdot\vec{\sigma}_{N}-\left(\vec{v}_{\mu}\cdot\vec{\sigma}_{L}\right)\left(\hat{q}\cdot\vec{\sigma}_{N}\right)-\left[\hat{q}\times\left(\vec{v}_{\mu}\times\vec{\sigma}_{L}\right)\right]\cdot\vec{\sigma}_{N}+O\left(\frac{q^{2}}{m_{N}^{2}}\right)$	$+\mathcal{O}_5^f+2i\mathcal{O}_{14}^f+2i\mathcal{O}_{13}^{f'}$	$\mathcal{O}_1 = \mathbf{I}_L \mathbf{I}_N,$
22	$ar{\chi}_e \sigma^{\mu u} \chi_\mu ar{N} \left(rac{q_\mu}{m_N} \gamma_ u - rac{q_ u}{m_N} \gamma_\mu ight) N$	$-2i\frac{q}{m_N}1_L1_N + i\frac{q^2}{m_N^2}\left(\vec{\sigma}_L\cdot\vec{\sigma}_N\right) - 2\frac{q}{m_N}\vec{\sigma}_L\cdot\left(\hat{q}\times\vec{v}_N\right)$	$-2i\frac{q}{m_N}\mathcal{O}_1+i\frac{q^2}{m_N^2}\mathcal{O}_4+2i\frac{q}{m_N}\mathcal{O}_5$	$\mathcal{O}_3 \equiv 1_L i \hat{q} \cdot (\vec{v}_N \times \vec{\sigma}_N)$
		$+i\frac{q^2}{m_N^2}\left(\hat{q}\cdot\vec{\sigma}_N\right)\left(\vec{\sigma}_L\cdot\hat{q}\right)+i\frac{q}{m_N}\left(\vec{v}_\mu\cdot\hat{q}\right)1_N-\frac{q}{m_N}\hat{q}\cdot\left(\vec{v}_\mu\times\vec{\sigma}_L\right)1_N+O\left(\frac{q^3}{m_N^3}\right)$	$-i\frac{q^2}{m_N^2}\mathcal{O}_6 + 2i\frac{q}{m_N}\mathcal{O}_2^{f'} + 2i\frac{q}{m_N}\mathcal{O}_3^f$	$\mathcal{O}_4 \equiv \vec{\sigma}_L \cdot \vec{\sigma}_N,$
23	$\bar{\chi}e^{\sigma^{\mu\nu}}\chi_{\mu}\bar{N'}\left(\frac{q_{\mu}}{m_{N}}v_{N\nu}-\frac{q_{\nu}}{m_{N}}v_{N\mu}\right)N$	$\frac{q}{m_N} \left[-2i1_L \cdot 1_N + 2\vec{\sigma}_L \cdot \left(\hat{q} \times \vec{v}_N \right) + i \left(\hat{q} \cdot \vec{v}_\mu \right) 1_N - \hat{q} \cdot \left(\vec{v}_\mu \times \vec{\sigma}_L \right) 1_N \right] + O\left(\frac{q^3}{m_N^3} \right)$	$2\frac{q}{m_N}\left(-i\mathcal{O}_1-i\mathcal{O}_5+\mathcal{O}_2^{f'}+i\mathcal{O}_3^f\right)$	$\mathcal{O}_5 \equiv \vec{\sigma}_L \cdot \left(i\hat{q} \times \vec{v}_N \right),$
24	$ar{\chi} e \sigma^{\mu u} \chi_{\mu} ar{N} \left(\gamma_{\mu} rac{d}{m_N} \gamma_{ u} - \gamma_{ u} rac{d}{m_N} \gamma_{\mu} ight) N$	$-4i\frac{q}{m_N}\left[\left(\vec{\sigma}_L\cdot\vec{\sigma}_N\right)+4i\frac{q}{m_N}\left(\vec{\sigma}_L\cdot\hat{q}\right)\left(\vec{\sigma}_N\cdot\hat{q}\right)+i\left(\hat{q}\cdot\vec{\sigma}_L\right)\left(\vec{v}_N\cdot\vec{\sigma}_N\right)\right]$	$-4i\frac{q}{m_N}\left(\mathcal{O}_4+\mathcal{O}_6-i\mathcal{O}_{14}\right)$	$\mathcal{O}_6 = (i\hat{q}\cdot\vec{\sigma}_I)(i\hat{q}\cdot\vec{\sigma}_N)$
		$-4i\frac{q}{m_N}\left\{i\left(\hat{q}\times\frac{\vec{v}_\mu}{2}\right)\cdot\vec{\sigma}_N-\left[\hat{q}\times\left(\frac{\vec{v}_\mu}{2}\times\vec{\sigma}_L\right)\right]\cdot\vec{\sigma}_N\right\}+O\left(\frac{q^3}{m_N^3}\right)$	$-4irac{q}{m_N}\left(\mathcal{O}_5^f+i\mathcal{O}_{13}^{f'} ight)$	$C_{0} = (c_{q} \circ L)(c_{q} \circ N);$
25	$ar{\chi}_{e}\left(rac{q\mu}{m_{L}}\gamma^{ u}-rac{q^{ u}}{m_{L}}\gamma^{\mu} ight)\chi_{\mu}ar{N}\sigma_{\mu u}N$	$\frac{q}{m_L} \left\{ 2i \left(\vec{\sigma}_L \cdot \vec{\sigma}_N \right) - 2i \left(\hat{q} \cdot \vec{\sigma}_L \right) \left(\hat{q} \cdot \vec{\sigma}_N \right) + \frac{i}{2} \frac{q}{m_N} 1_L 1_N - 1_L \hat{q} \cdot \left(\vec{\sigma}_N \times \vec{\sigma}_N \right) \right\}$	$i\frac{q}{m_L}\left(2\mathcal{O}_4+2\mathcal{O}_6+\frac{1}{2}\frac{q}{m_N}\mathcal{O}_1+\mathcal{O}_3\right)$	$\mathcal{O}_{13} \equiv \vec{\sigma}_L \cdot [i\hat{q} \times (\vec{v}_N \times \vec{\sigma}_N)]$
		$+ \frac{q}{m_L} \left\{ \left(\hat{q} \times \vec{v}_\mu \right) \cdot \vec{\sigma}_N + i \left[\hat{q} \times \left(\vec{v}_\mu \times \vec{\sigma}_L \right) \right] \cdot \vec{\sigma}_N \right\} + O\left(\frac{q}{m_L} \frac{q^2}{m_N^2} \right)$	$+2\frac{q}{m_L}\left(-i\mathcal{O}_5^f + \mathcal{O}_{13}^{f'}\right)$	$\mathcal{O}_{14} \equiv \left(i\hat{q}\cdot\vec{\sigma}_L\right)\left(\vec{v}_N\cdot\vec{\sigma}_N\right).$
26	$\bar{\chi}e\left(\frac{q\mu}{m_L}\gamma^{\nu}-\frac{q^{\nu}}{m_L}\gamma^{\mu}\right)\chi_{\mu}\bar{N}\left(\frac{q\mu}{m_N}\gamma\nu-\frac{q_{\nu}}{m_N}\gamma_{\mu}\right)N$	$\frac{q^2}{m_L m_N} \left[-1_L 1_N + \frac{q}{m_N} \left(\vec{\sigma}_L \cdot \vec{\sigma}_N \right) - \frac{q}{m_N} \left(\hat{q} \cdot \vec{\sigma}_N \right) \left(\hat{q} \cdot \vec{\sigma}_L \right) + 2i\vec{\sigma}_L \cdot \left(\hat{q} \times \vec{v}_N \right) \right]$	$\frac{q^2}{m_L m_N} \left(-\mathcal{O}_1 + \frac{q}{m_N} \mathcal{O}_4 + \frac{q}{m_N} \mathcal{O}_6 + 2\mathcal{O}_5 \right)$	\vec{t}' $\vec{v}_{''}$
		$+\frac{q^2}{m_L m_N} \left[-\left(\dot{q} \cdot \vec{v}_\mu \right) 1_N - i \dot{q} \cdot \left(\vec{v}_\mu \times \vec{\sigma}_L \right) 1_N \right] + O\left(\frac{q}{m_L} \frac{q^3}{m_N^3} \right)$	$+\frac{q^2}{m_L m_N} \left(2i\mathcal{O}_2^{f'} - 2\mathcal{O}_3^f\right)$	$\int \mathcal{O}_2^j \equiv i\hat{q} \cdot \frac{\mu}{2} 1_N,$
27	$\bar{\chi}_{e}\left(\frac{q^{\mu}}{m_{L}}\gamma^{\nu}-\frac{q^{\nu}}{m_{L}}\gamma^{\mu}\right)\chi_{\mu}\bar{N'}\left(\frac{q_{\mu}}{m_{N}}v_{N\nu}-\frac{q_{\nu}}{m_{N}}v_{N\mu}\right)N$	$\frac{q}{m_L} \frac{q}{m_N} \left\{ -1_L 1_N + 2i\vec{\sigma}_L \cdot (\hat{q} \times \vec{v}_N) \right\} $	$\frac{q^2}{m_L m_N} \left(-\mathcal{O}_1 + 2\mathcal{O}_5 \right)$	$\int e^{f} \left(\vec{v}_{\mu} - \vec{v} \right) dt$
		$-\frac{q}{m_L}\frac{q}{m_N}\left\{\left(\hat{q}\cdot\vec{v}_{\mu}\right)1_N+i\hat{q}\cdot\left(\vec{v}_{\mu}\times\vec{\sigma}_L\right)1_N\right\}+O\left(\frac{q}{m_L}\frac{q^3}{m_N^3}\right)$	$+\frac{q^2}{m_L m_N} \left(2i\mathcal{O}_2^{f'} - 2\mathcal{O}_3^f\right)$	$ \qquad \qquad$
28	$\bar{\chi}e\left(\frac{q^{\mu}}{m_{L}}\gamma^{\nu}-\frac{q^{\nu}}{m_{L}}\gamma^{\mu}\right)\chi_{\mu}\bar{N}\left(\gamma_{\mu}\frac{d}{m_{N}}\gamma_{\nu}-\gamma_{\nu}\frac{d}{m_{N}}\gamma_{\mu}\right)N$	$O\left(\frac{1}{m^6}\right)$		$\mathcal{O}^{f} = \left(\begin{array}{cc} & & \vec{v}_{\mu} \end{array} \right) \vec{v}$
29	$ar{\chi}_e \left(rac{q^lpha}{m_L} v^ u_\mu - rac{q^ u}{m_L} v^lpha_\mu ight) \chi_\mu ar{N} \sigma_{lpha u} N$	$=2\frac{q}{m_L}\left\{\frac{i}{2}\frac{q}{m_N}1_L1_N-1_L\hat{q}\cdot\left(\vec{v}_N\times\vec{\sigma}_N\right)+\left(\hat{q}\times\vec{v}_\mu\right)\cdot\vec{\sigma}_N\right\}+O\left(\frac{q}{m_L}\frac{q^2}{m_N^2}\right)$	$i \frac{q}{m_L} \left(\frac{q}{m_N} \mathcal{O}_1 + 2\mathcal{O}_3 - 4\mathcal{O}_5^f \right)$	$] O_5^{\epsilon} \equiv \left(iq \times \frac{1}{2} \right) \cdot \sigma_N, $
30	$\bar{\chi}e\left(\frac{q^{\alpha}}{m_L}v^{\nu}_{\mu}-\frac{q^{\nu}}{m_L}v^{\alpha}_{\mu}\right)\chi_{\mu}\bar{N}\left(\frac{q_{\alpha}}{m_N}\gamma_{\nu}-\frac{q_{\nu}}{m_N}\gamma_{\alpha}\right)N$	$= 2 \frac{q^2}{m_L m_N} \left\{ -1_L 1_N + \left(\hat{q} \cdot \frac{\vec{v}_{\mu}}{2}\right) 1_N + i\hat{q} \cdot \left(\frac{\vec{v}_{\mu}}{2} \times \vec{\sigma}_L\right) 1_N \right\} + O\left(\frac{q}{m_L} \frac{q^3}{m_N^3}\right)$	$2\frac{q^2}{m_L m_N} \left(-\mathcal{O}_1 - i\mathcal{O}_2^{f'} + \mathcal{O}_3^f\right)$	$] \mathcal{O}_{12}^{f'} \equiv \left[i\hat{q} \times \left(\frac{\vec{v}_{\mu}}{V} \times \vec{\sigma}_{I} \right) \right] \cdot \vec{\sigma}_{N}. $
31	$\bar{\chi}e\left(\frac{q^{\alpha}}{m_{L}}v_{\mu}^{\nu}-\frac{q^{\nu}}{m_{L}}v_{\mu}^{\alpha}\right)\chi_{\mu}\bar{N'}\left(\frac{q_{\alpha}}{m_{N}}v_{N\nu}-\frac{q_{\nu}}{m_{N}}v_{N\alpha}\right)N$	$2\frac{q^2}{m_L m_N} \left\{ -1_L 1_N + \left(\hat{q} \cdot \frac{\vec{v}_\mu}{2}\right) 1_N + i\hat{q} \cdot \left(\frac{\vec{v}_\mu}{2} \times \vec{\sigma}_L\right) 1_N \right\} + O\left(\frac{q}{m_L} \frac{q^3}{m_N^3}\right)$	$2\frac{q^2}{m_L m_N} \left(-\mathcal{O}_1 - i\mathcal{O}_2^{f'} + \mathcal{O}_3^{f}\right)$	
32	$\bar{\chi}e\left(\frac{q^{\alpha}}{m_{L}}v_{\mu}^{\nu}-\frac{q^{\nu}}{m_{L}}v_{\mu}^{\alpha}\right)\chi_{\mu}\bar{N}\left(\gamma_{\alpha}\frac{d}{m_{N}}\gamma_{\nu}-\gamma_{\nu}\frac{d}{m_{N}}\gamma_{\alpha}\right)N$	$O\left(\frac{1}{m^6}\right)$		$\mathcal{O}_{14}^f \equiv \left(\frac{\vec{v}_{\mu}}{2} \cdot \vec{\sigma}_L\right) \left(i\hat{q} \cdot \vec{\sigma}_N\right).$
33	$ar{\chi}_{e}\left(\gamma^{\mu}rac{d}{mL}\gamma^{ u}-\gamma^{ u}rac{d}{mL}\gamma^{\mu} ight)\chi_{\mu}ar{N}\sigma_{\mu u}N$	$-4i\frac{q}{m_L}\left\{\left(\hat{q}\cdot\vec{\sigma}_L\right)\left(\hat{q}\cdot\vec{\sigma}_N\right)-\vec{\sigma}_L\cdot\left[\hat{q}\times\left(\vec{\sigma}_N\times\vec{\sigma}_N\right)\right]\right\}+O\left(\frac{q}{m_L}\frac{q^2}{m_N^2}\right)$	$4\frac{q}{m_L}\left(i\mathcal{O}_6+\mathcal{O}_{13}'\right)$	
		$-4i\frac{q}{m_L}\left(\frac{\vec{v}_{\mu}}{2}\cdot\vec{\sigma}_L\right)\left(\hat{q}\cdot\vec{\sigma}_N\right) + O\left(\frac{q}{m_L}\frac{q^2}{m_N^2}\right)$	$-4rac{q}{m_L}\mathcal{O}_{14}^f$	Matching data
34	$\bar{\chi}_{e}\left(\gamma^{\mu}\frac{d}{m_{L}}\gamma^{\nu}-\gamma^{\nu}\frac{d}{m_{L}}\gamma^{\mu}\right)\chi_{\mu}\bar{N}\left(\frac{q_{\mu}}{m_{N}}\gamma_{\nu}-\frac{q_{\nu}}{m_{N}}\gamma_{\mu}\right)N$	$O\left(\frac{1}{m^6}\right)$		\Rightarrow Must be Tensor
35	$\bar{\chi}_{e}\left(\gamma^{\mu}\frac{d}{m_{L}}\gamma^{\nu}-\gamma^{\nu}\frac{d}{m_{L}}\gamma^{\mu}\right)\chi_{\mu}\bar{N'}\left(\frac{q_{\mu}}{m_{N}}v_{N\nu}-\frac{q_{\nu}}{m_{N}}v_{N\mu}\right)N$	$O\left(\frac{1}{m^6}\right)$		
36	$\bar{\chi}_{e}\left(\gamma^{\mu}\frac{d}{m_{L}}\gamma^{\nu}-\gamma^{\nu}\frac{d}{m_{L}}\gamma^{\mu}\right)\chi_{\mu}\bar{N}\left(\gamma_{\mu}\frac{d}{m_{N}}\gamma_{\nu}-\gamma_{\nu}\frac{d}{m_{N}}\gamma_{\mu}\right)N$	$8\frac{q^2}{m_L m_N}\left\{ \left(\vec{\sigma}_L \cdot \vec{\sigma}_N\right) - \left(\hat{q} \cdot \vec{\sigma}_L\right) \left(\hat{q} \cdot \vec{\sigma}_N\right) - \left(\hat{q} \cdot \vec{\sigma}_L\right) \left(\vec{v}_N \cdot \vec{\sigma}_N\right) \right\}$	$8\frac{q^2}{m_Lm_N}\left(\mathcal{O}_4+\mathcal{O}_6+i\mathcal{O}_{14}\right)$	
	. , , , , ,	$+8\frac{q^2}{m_Lm_N}\left\{-i\left(\hat{q}\times\frac{\vec{v}\mu}{2}\right)\cdot\vec{\sigma}_N+\left[\hat{q}\times\left(\frac{\vec{v}\mu}{2}\times\vec{\sigma}_L\right)\right]\cdot\vec{\sigma}_N\right\}+O\left(\frac{q}{m_L}\frac{q^3}{m_N^3}\right)$	$-8\frac{q^2}{m_L m_N} \left(\mathcal{O}_5^f + i\mathcal{O}_{13}^{f'}\right)$	AGM, arXiv:2312.0833

New weak interactions Nuclear β -decay

BSM Searches

Weak interaction

Low energy reaction of leptons with nucleons

$$\begin{aligned} \widehat{\mathcal{H}}_{W} \sim C \widehat{j}(\overrightarrow{x}) & \downarrow \\ \downarrow & \downarrow \\ A \text{-priori:} & \mathsf{Scalar} (C_{S}) \\ \mathsf{PseudoScalar} (C_{P}) \\ \mathsf{Vector} (C_{V}) \\ \mathsf{Axial vector} (C_{A}) \\ \mathsf{Tensor} (C_{T}) \end{aligned}$$

Theory: C.N. Yang and T.D. Lee (Nobel 1957)

Experiment: C.S. Wu: Parity violation in *nuclear* β -decays

 \Rightarrow Weak SM structure: "V - A"

BSM Searches

Weak interaction

Low energy reaction of leptons with nucleons

Theory: C.N. Yang and T.D. Lee (Nobel 1957)

Experiment: C.S. Wu: Parity violation in *nuclear* β -decays

 \Rightarrow Weak SM structure: "V - A"

The SM is incomplete

>> Ongoing searches for C_S, C_P, C_T in precision *nuclear* β -decay experiments

Low momentum transfer: $q \sim 0 - 10 \text{ MeV/c}$

Beta decay, Khan Academy, cdn.kastatic.org/ka-perseusimages/8d978444f15f9bbc3bcadb0549816bc7e264b977.svg

Low momentum transfer: $q \sim 0 - 10 \text{ MeV/c}$

angular parity f momentum f parity f Transitions $J^{\Delta \pi}$:

"Allowed" (when $q \rightarrow 0$)

• 0⁺: Fermi

• 1⁺: Gamow-Teller

"Forbidden" (vanish for $q \rightarrow 0$)

• All the rest $(J^{\Delta \pi})$

 $\beta \text{-decay rate:}$ $d\omega \propto \left| \left\langle \psi_f \| \widehat{H}_W \| \psi_i \right\rangle \right|^2 \propto 1 + a_{\beta\nu} \vec{\beta} \cdot \hat{\nu} + b_F \frac{m_e}{E}$ Observables

Beta decay, Khan Academy, cdn.kastatic.org/ka-perseus-

electron's $\triangleright \beta$ -decay rate: mass, $d\omega \propto \left| \left\langle \psi_f \left\| \widehat{H}_W \right\| \psi_i \right\rangle \right|^2 \propto 1 + a_{\beta\nu} \vec{\beta} \cdot \hat{\nu} + b_F \frac{m_e}{E} - \frac{m_e}{E} - \frac{m_e}{E} + \frac{m_e$ Observables Measurements (e.g., Gamow-Teller): $-\frac{|C_T^+|^2+|C_T^-|^2}{|C_T^-|^2}$ • Angular correlation: $a_{\beta\nu} = -\frac{1}{3} \left(1 \right)$ Beta decay, Khan Academy, cdn.kastatic.org/ka-perseusimages/8d978444f15f9bbc3bcadb0549816b ▶ Quadratic in C_T^+ , C_T^- BSM anti **Energy spectrum:** Fierz term $b_F^{\beta^{\mp}} = 0 \pm \frac{c_T^{\beta^{\mp}}}{c_T^{\beta^{\mp}}}$ neutrino electron > Vanishes for right-handed neutrinos ($C_T^+ = 0$) neutron I'm a changed man! nucleus $C_A = 1.27$ Axial vector coupling constant (SM)

BSM Searches

BSM Searches

BSM Searches

BSM Searches

Unique 1st-forbidden decays

 $d\omega \propto 1 + a_{\beta\nu} \left[1 - \left(\hat{\beta} \cdot \hat{\nu} \right)^2 \right] + b_F \frac{m_e}{\epsilon}$

Ohayon, Chocron, Hirsh, AGM, et al., Hyp.Int.2018

The β -energy spectrum is sensitive to both $a_{\beta\nu} \& b_F$

$^{16}N \rightarrow ^{16}O$ forbidden spectrum

Experiments are aiming a 10^{-3} accuracy

► The spectrum can be used to extract $b_{\rm F}$ & $a_{\beta\nu}$

$^{16}N \rightarrow ^{16}O$ forbidden spectrum

- Experiments are aiming a 10^{-3} accuracy
- ► The spectrum can be used to extract $b_{\rm F}$ & $a_{\beta\nu}$

$^{16}N \rightarrow ^{16}O$ forbidden angular correlation

Experiments are aiming a 10^{-3} accuracy

16N forbidden beta decay angular correlation

Summary: BSM Searches with nuclei...

Astronomy

www.esa.int/ESA_Multimedia/Images/2013/03/Plan

> Dark Matter direct detection

¹⁹F ²³Na and many more...

Particles Physics

Lucas Taylor / CERN - http://cdsweb.cern.ch/record/628469 © 1997-2022 CERN (License: CC-BY-SA-4.0)

Lepton Flavor Violation with $\mu \rightarrow e$ conversion ⁹⁰Sr ^{16}N Ti ²³Ne ²⁷Al ⁶³Cu ²³Ne ⁶He

Precision Frontier Nuclear Physics

Mardor et al., Eur. Phys. J. A 54, 91 (2018)

New Weak Interactions with β -decays

Thanks!

INT Vincenzo Cirigliano Wouter Dekens

TRIUMF Lotta Jokiniemi Peter Gysbers Petr Navrátil Jason Holt

Chalmers University Christian Forssén

ÚJF rez Daniel Gazda

University of Barcelona Javier Menéndez

UC Berkeley Wick Haxton

ETH Zurich Ben Ohayon Hebrew University Doron Gazit Guy Ron Hitesh Rahangdale Vishal Srivastava

LLNL Nicholas Scielzo Yonatan Mishnayot Jason Harke Aaron Gallant Richard Hughes

ORNL Charlie Rasco

SARAF (SOREQ) Sergey Vaintraub Tsviki Hirsh Leonid Waisman Arik Kreisel Boaz Kaizer