





## Nuclear physics for the precise extraction of Vud

**Chien-Yeah Seng** 

### University of Washington and FRIB, Michigan State University

seng@frib.msu.edu

PAINT2024 – Workshop on Progress in Ab Initio Nuclear Theory, TRIUMF

29 February, 2024

# Outline

- 1. Precision frontier and the CKM unitarity
- **2.**  $V_{ud}$  from beta decays
- 3. Inputs at tree-level
  - > Weak decay form factors
  - > Isospin-breaking correction
- 4. Inputs at loop-level
  - > Nucleus-independent radiative corrections
  - > Nucleus-dependent radiative corrections
- 5. Summary and outlook

# Outline

## 1. Precision frontier and the CKM unitarity

- **2.**  $V_{ud}$  from beta decays
- **3.** Inputs at tree-level
  - Weak decay form factors
  - Solution Structure
    Solution
- 4. Inputs at loop-level
  - > Nucleus-independent radiative corrections
  - > Nucleus-dependent radiative corrections
- **5.** Summary and outlook



### **Standard Model of Elementary Particles**



Image credit: Wikipedia

### **Two Ultimate Goals in Nuclear and Particle Physics (my opinion)**



Petronas Twin Towers, Kuala Lumpur, Malaysia

# Many unresolved problems call for physics beyond the Standard Model (BSM) !

Image credit: Wikipedia



Why is there much more matter than antimatter in the observed universe?

What is the origin of dark energy and dark matter?

Image credit: Jefferson Lab



What is the nature of the neutrino mass?



**Precision Frontier**: Measure things very precisely, and look for their **deviations** from SM prediction!

# **Precision Frontier**



### Standard Model Prediction

Experimental Result 8

# **Precision Frontier**



### Standard Model Prediction

Experimental Result 9

# **Precision Frontier**



### Standard Model Prediction

Experimental Result <sup>10</sup>

## **Example: Charged weak decays and CKM unitarity**



Massive quarks ==> Generation mixing

$$\psi_{d,f} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{f} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{m}$$

### Cabibbo-Kobayashi-Maskawa (CKM) matrix

Three generations of quarks and leptons





Weak interaction universality ==> Unitarity of the measured CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Can be tested at **0.01%** level! Probes new physics at the scale:

$$\left(\frac{v_{\rm H}}{\Lambda_{\rm BSM}}\right)^2 \sim 0.01\% \implies \Lambda_{\rm BSM} \sim 20 \,{\rm TeV}$$

Competitive to high-energy experiments!





**Perfect example of strong-electroweak interplay** 

# Outline

- **1.** Precision frontier and the CKM unitarity
- **2.**  $V_{ud}$  from beta decays
- **3.** Inputs at tree-level
  - > Weak decay form factors
  - Solution Structure
    Solution
- 4. Inputs at loop-level
  - > Nucleus-independent radiative corrections
  - > Nucleus-dependent radiative corrections
- **5.** Summary and outlook

# V<sub>ud</sub>: The most precisely-studied CKM matrix element



Pion:  $\pi^+ \to \mu^+ \nu_\mu$  or  $\pi^0 e^+ \nu_e$ Neutron:  $n \to pe\nu_e$ Nucleus:  $i \to fe\nu_e$ 

## "Superallowed" beta decays of I=1, J<sup>p</sup>=0<sup>+</sup> nuclei

$$i(0^+) \to f(0^+) + e^+ + \nu_e$$



## Provides the **best measurement of V**<sub>ud</sub> :

- > Tree-level amplitude is (almost) known
- > 23 measured transitions
- > 15 with ft-precision better than 0.23%

Hardy and Towner, 2020 PRC

$$|V_{ud}|^2 = \frac{\pi^3 \ln 2}{G_F^2 m_e^5 ft(1+\delta_{\rm R}')(1+\Delta_{\rm R}^V)(1+\delta_{\rm NS}-\delta_{\rm C})}$$

Master Formula

### **Experimental Inputs:**



Master Formula

### **Theoretical Inputs:**



"outer" radiative correction

Isospin-breaking

correction to Fermi

# Outline

- **1.** Precision frontier and the CKM unitarity
- **2.**  $V_{ud}$  from beta decays
- 3. Inputs at tree-level
  - > Weak decay form factors
  - > Isospin-breaking correction
- 4. Inputs at loop-level
  - > Nucleus-independent radiative corrections
  - > Nucleus-dependent radiative corrections
- **5.** Summary and outlook

## **Superallowed decays at tree level**



**Charged weak decay matrix element:** 



## **1. Conventional shell-model calculation**

Hardy and Towner, 2005 PRC

 $\langle f|O|i\rangle = \sum_{\alpha\beta} \langle \alpha|O|\beta \rangle \langle f|a_{\alpha}^{\dagger}a_{\beta}|i \rangle$ single-nucleon states

Difficult to quantify theory uncertainty!

## 2. Relate it to a distribution



$$ho_{
m cw}(r)$$

Distribution of "active" nucleons eligible for weak transitions in a nucleus



## 2. Relate it to a distribution



"Semi" data-driven approach:

Wilkinson, 1993 Nucl.Inst.Meth.Phys.Res.A; Hayen et al., 2018 RMP

$$\rho_{\rm cw}(r) = \rho_{\rm ch}(r) + \delta\rho(r)$$

Nuclear charge distribution (data)

Assume small, estimate using shell model

## 2. Relate it to a distribution



### **Fully data-driven approach:**

Relate to a pair of nuclear charge distributions using CVC

Hostein, 1974 RMP; CYS, 2023 PRL

$$\begin{split} \rho_{\rm cw}(r) &= \rho_{\rm ch,1}(r) + Z_0 \left( \rho_{\rm ch,0}(r) - \rho_{\rm ch,1}(r) \right) \\ &= \rho_{\rm ch,1}(r) + \frac{Z_{-1}}{2} \left( \rho_{\rm ch,-1}(r) - \rho_{\rm ch,1}(r) \right) \end{split}$$

26



"Semi" data-driven approach not well-justified!

### Measured nuclear charge radii

| A  | $\langle r_{\rm ch,-1}^2 \rangle^{1/2}   ({\rm fm})$ | $\langle r_{\mathrm{ch},0}^2 \rangle^{1/2} \ \mathrm{(fm)}$ | $\langle r_{\mathrm{ch},1}^2 \rangle^{1/2} \; (\mathrm{fm})$ |
|----|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| 10 | $^{10}_{6}\mathrm{C}$                                | $^{10}_{5}{ m B(ex)}$                                       | ${}^{10}_4\text{Be:}\ 2.3550(170)^a$                         |
| 14 | $\frac{14}{8}$ O                                     | $^{14}_{7}N(ex)$                                            | ${}^{14}_{6}$ C: 2.5025(87) <sup>a</sup>                     |
| 18 | $^{18}_{10}$ Ne: 2.9714(76) <sup>a</sup>             | ${}^{18}_{9}{ m F(ex)}$                                     | ${}^{18}_{8}$ O: 2.7726(56) <sup>a</sup>                     |
| 22 | $^{22}_{12}$ Mg: 3.0691(89) <sup>b</sup>             | $^{22}_{11}$ Na(ex)                                         | $^{22}_{10}$ Ne: 2.9525(40) <sup>a</sup>                     |
| 26 | $^{26}_{14}{ m Si}$                                  | $^{26m}_{13}$ Al: 3.130(15) <sup>f</sup>                    | $^{26}_{12}$ Mg: 3.0337(18) <sup>a</sup>                     |
| 30 | $^{30}_{16}{ m S}$                                   | $^{30}_{15}{ m P(ex)}$                                      | $^{30}_{14}$ Si: 3.1336(40) <sup>a</sup>                     |
| 34 | $^{34}_{18}$ Ar: 3.3654(40) <sup>a</sup>             | $^{34}_{17}{ m Cl}$                                         | $^{34}_{16}$ S: 3.2847(21) <sup>a</sup>                      |
| 38 | $^{38}_{20}$ Ca: 3.467(1) <sup>c</sup>               | $^{38m}_{19}$ K: 3.437(4) <sup>d</sup>                      | $^{38}_{18}$ Ar: 3.4028(19) <sup>a</sup>                     |
| 42 | $^{42}_{22}{ m Ti}$                                  | $^{42}_{21}$ Sc: 3.5702(238) <sup>a</sup>                   | ${}^{42}_{20}$ Ca: 3.5081(21) <sup>a</sup>                   |
| 46 | $^{46}_{24}\mathrm{Cr}$                              | $^{46}_{23}\mathrm{V}$                                      | ${}^{46}_{22}$ Ti: 3.6070(22) <sup>a</sup>                   |
| 50 | $^{50}_{26}{ m Fe}$                                  | $_{25}^{50}$ Mn: 3.7120(196) <sup>a</sup>                   | $^{50}_{24}$ Cr: 3.6588(65) <sup>a</sup>                     |
| 54 | ${}^{54}_{28}$ Ni: 3.738(4) <sup>e</sup>             | $^{54}_{27}\mathrm{Co}$                                     | ${}^{54}_{26}$ Fe: $3.6933(19)^a$                            |
| 62 | $^{62}_{32}\mathrm{Ge}$                              | $^{62}_{31}\mathrm{Ga}$                                     | ${}^{62}_{30}$ Zn: 3.9031(69) <sup>b</sup>                   |
| 66 | $^{66}_{34}\mathrm{Se}$                              | ${}^{66}_{33}\mathrm{As}$                                   | ${}^{66}_{32}\mathrm{Ge}$                                    |
| 70 | $^{70}_{36}{ m Kr}$                                  | $^{70}_{35}{ m Br}$                                         | $^{70}_{34}{ m Se}$                                          |
| 74 | $^{74}_{38}{ m Sr}$                                  | $^{74}_{37}$ Rb: 4.1935(172) <sup>b</sup>                   | $^{74}_{36}$ Kr: 4.1870(41) <sup>a</sup>                     |

High-precision study of light nuclei charge radii: See Evgeny Epelbaum's talk <sup>28</sup>

### Shell model Data-driven

| Transition                                       | $t \ (ms)$                         | $(ft)_{\rm HT}$ (s)               | $(ft)_{new}(s)$        |
|--------------------------------------------------|------------------------------------|-----------------------------------|------------------------|
| $^{18}\mathrm{Ne}{ ightarrow}^{18}\mathrm{F}$    | $21630\pm590$                      | $2912\pm79$                       | $2912\pm80$            |
| $^{22}Mg \rightarrow ^{22}Na$                    | $7293 \pm 16$                      | $3051.1\pm6.9$                    | $3050.4\pm6.8$         |
| $^{26}\text{Si}{\rightarrow}^{26m}\text{Al}$     | $2969.0\pm5.4$                     | $3052.2\pm5.6$                    | $3050.7\pm5.6$         |
| $^{34}\mathrm{Ar}{\rightarrow}^{34}\mathrm{Cl}$  | $896.55 \pm 0.81$                  | $3058.0\pm2.8$                    | $3057.1\pm2.8$         |
| $^{38}\mathrm{Ca}{\rightarrow}^{38m}\mathrm{K}$  | $574.8 \pm 1.1$                    | $3062.8\pm6.0$                    | $3062.2\pm5.9$         |
| $^{42}\mathrm{Ti}{ ightarrow}^{42}\mathrm{Sc}$   | $433 \pm 12$                       | $3090\pm88$                       | $3085\pm86$            |
| $^{50}\mathrm{Fe}{ ightarrow}^{50}\mathrm{Mn}$   | $205.8\pm4.7$                      | $3099\pm71$                       | $3098\pm72$            |
| $^{54}\text{Ni}{ ightarrow}^{54}\text{Co}$       | $144.9\pm2.3$                      | $3062\pm50$                       | $3063\pm49$            |
| $^{26m}\mathrm{Al}{\rightarrow}^{26}\mathrm{Mg}$ | $6351.24\substack{+0.55\\-0.54}$   | $3037.61\pm0.67$                  | $3036.5\pm1.0$         |
| $^{34}\text{Cl}{\rightarrow}^{34}\text{S}$       | $1527.77_{-0.44}^{+0.47}$          | $3049.43\substack{+0.95\\-0.88}$  | $3048.0\pm1.1$         |
| $^{38m}\mathrm{K}{ ightarrow}^{38}\mathrm{Ar}$   | $925.42\pm0.28$                    | $3051.45\pm0.92$                  | $3050.5\pm1.1$         |
| $^{42}\mathrm{Sc}{\rightarrow}^{42}\mathrm{Ca}$  | $681.44\pm0.26$                    | $3047.7 \pm 1.2$                  | $3045.0\pm2.7$         |
| $^{50}Mn \rightarrow ^{50}Cr$                    | $283.68\pm0.11$                    | $3048.4 \pm 1.2$                  | $3046.1\pm3.6$         |
| $^{54}\mathrm{Co}{ ightarrow}^{54}\mathrm{Fe}$   | $193.495\substack{+0.086\\-0.063}$ | $\overline{3050.8^{+1.4}_{-1.1}}$ | $3051.3^{+1.7}_{-1.4}$ |
| $^{74}\text{Rb}{ ightarrow}^{74}\text{Kr}$       | $65.201\pm0.047$                   | $3082.8\pm6.5$                    | $3086 \pm 11$          |

Gorchtein and CYS, 2311.00044

## **Isospin symmetry breaking (ISB) correction**

Full Fermi matrix element:



Symmetry broken due to:

# Proton's electric charge M<sub>p</sub> ≠ M<sub>n</sub>

**6 decades** of  $\delta_c$  -calculations show huge model-dependence!

### Ab-initio study with no-core shell model (NCSM) returned non-convergent result!

Caurier, Navratil, Ormand and Vary, 2002 PRC



| Transitions                                      | $\delta_{ m C}$ (%) |       |             |                      |       |
|--------------------------------------------------|---------------------|-------|-------------|----------------------|-------|
|                                                  | WS                  | DFT   | $_{\rm HF}$ | $\operatorname{RPA}$ | Micro |
| $^{26m}\mathrm{Al}\rightarrow^{26}\!\mathrm{Mg}$ | 0.310               | 0.329 | 0.30        | 0.139                | 0.08  |
| $^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$   | 0.613               | 0.75  | 0.57        | 0.234                | 0.13  |
| $^{38m}\mathrm{K}\rightarrow ^{38}\!\mathrm{Ar}$ | 0.628               | 1.7   | 0.59        | 0.278                | 0.15  |
| $^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$  | 0.690               | 0.77  | 0.42        | 0.333                | 0.18  |
| $^{46}\mathrm{V} \rightarrow ^{46}\mathrm{Ti}$   | 0.620               | 0.563 | 0.38        | /                    | 0.21  |
| $^{50}\mathrm{Mn} \rightarrow ^{50}\mathrm{Cr}$  | 0.660               | 0.476 | 0.35        | /                    | 0.24  |
| $^{54}\mathrm{Co} \rightarrow ^{54}\mathrm{Fe}$  | 0.770               | 0.586 | 0.44        | 0.319                | 0.28  |

(Selected model results)

```
See also talks by Calvin Johnson,
Mark Caprio, Anna McCoy,
Patrick Fasano...
```

Similar convergence issue in other ISB-observables:

### 1. Quadrupole moments in mirror nuclei



FIG. 7. Ratio of  $Q_p$  in one member of mirror pair to  $Q_n$  in the other, calculated with the Daejeon16 (circles), JISP16 (squares), and LENPIC (diamonds) interactions at fixed  $\hbar\omega$  (15, 20, and 25 MeV, respectively, for the three interactions). Calculated values are shown for successive even values of  $N_{\text{max}}$  (increasing symbol size), from  $N_{\text{max}} = 4$  to the maximum value for that mirror pair, indicated at top.

#### Caprio, Fasano, Maris and McCoy, 2021 PRC

Similar convergence issue in other ISB-observables:

### 2. RMS radii in mirror nuclei



Mark Caprio, preliminary results

## **Perturbative representation of ISB:**

Miller and Schwenk, 2008 PRC; 2009 PRC 
$$H = H_0 + V$$
 ISB potential

**Energy eigenstates:**  $H|n\rangle = E_n|n\rangle$ ,  $H_0|n\rangle = E_n^0|n\rangle$ 

Wigner-Brillouin perturbation theory:

$$|n\rangle = \sqrt{\mathcal{Z}_n} \left[ |n\rangle + \frac{1}{E_n - \Lambda_n H \Lambda_n} \Lambda_n V |n\rangle \right]$$
  
Normalization factor Projection operator:  $\Lambda_n = 1 - |n\rangle(n|)$ 

Perturbative expansion makes underlying physics more transparent!

### Correction to M<sub>F</sub> starts from **second order** in ISB interaction:

Behrends and Sirlin, 1960 PRL;Ademollo and Gatto, 1964 PRL

$$\begin{split} \delta_{\mathrm{C}} &\approx -\frac{d}{dz} \bigg\{ \Big[ (i|VG(z)V|i) + (f|VG(z)V|f) \\ &- \frac{2}{M_F^0} (f|VG(z)\tau_+V|i) \Big] - g.s. \bigg\}_{z=E_g^0} \end{split}$$

Depends on **off-diagonal** matrix elements of V (unlike mass-splitting) ground-state contribution

**Nuclear Green's function:** 

$$G(z) \equiv \frac{1}{z - H_0}$$

See Michael Gennari's talk

# Outline

- **1.** Precision frontier and the CKM unitarity
- **2.**  $V_{ud}$  from beta decays
- **3.** Inputs at tree-level
  - > Weak decay form factors
  - Isospin-breaking correction
- 4. Inputs at loop-level
  - > Nucleus-independent radiative corrections
  - > Nucleus-dependent radiative corrections
- **5.** Summary and outlook

## **Radiative Corrections**



### Loop corrections



**Bremsstrahlung corrections** 

Full R.C. = 
$$\Delta_R^V + \delta_{NS}$$
  
Nucleus-  
independent Nucleus-  
dependent

## **Nucleus-independent RC**



## Methods to evaluate:

**1. Dispersion relation (DR)** --- relate the loop integral to experimentally-measurable structure functions

CYS, Gorchtein, Patel and Ramsey-Musolf, 2018 PRL; Shiells, Blunden and Melnitchouk, 2021 PRD



### Methods to evaluate:

2. Lattice QCD --- Compute the shaded blob directly

Feng, Gorchtein, Jin, Ma and CYS, 2020 PRL; Ma et al., 2308.16755



### Methods to evaluate:

2. Lattice QCD --- Structure function from Feynman-Hellmann theorem Can et al., 2402.00255

$$S(\lambda) = S_0 + \lambda_1 \int d^4 z \cos(q \cdot z) \mathcal{J}_{\mu}(z) + \lambda_2 \int d^4 y \sin(q \cdot y) \mathcal{J}_{\nu}^A(y),$$
$$\frac{\mathcal{F}_3(\omega, Q^2)}{\omega} = \frac{Q^2}{\mathbf{q}_2} \left. \frac{\partial^2 E_{N_\lambda}(\mathbf{p})}{\partial \lambda_1 \partial \lambda_2} \right|_{\lambda=0}$$



41

### Different evaluations of the nucleus-independent RC:

| Pre-2018                      |              |                                                   |    |
|-------------------------------|--------------|---------------------------------------------------|----|
| Method                        | $\Delta_R^V$ |                                                   |    |
| Phenomenological              | 0.02361(38)  | Marciano and Sirlin, 2006 PRL                     |    |
| DR with neutrino data (1)     | 0.02467(22)  | CYS, Gorchtein, Patel and Ramsey-Musolf, 2018 PRL |    |
| DR with neutrino data $(2)$   | 0.02471(18)  | Shiells, Blunden and Melnitchouk, 2021 PRD        |    |
| DR with indirect lattice data | 0.02477(24)  | CYS, Feng, Gorchtein and Jin, 2020 PRD            |    |
| Non-DR $(1)$                  | 0.02426(32)  | Czarnecki, Marciano and Sirlin, 2019 PRD          |    |
| Non-DR $(2)$                  | 0.02473(27)  | Hayen, 2021 PRD Post_20                           | 18 |
| Lattice                       | 0.02439(19)  | Ma et al., 2308.16755                             | TO |
|                               |              |                                                   |    |

 $\Delta_R^V \uparrow \Longrightarrow |V_{ud}| \downarrow$ 

## Nucleus-dependent inner RC, $\delta_{NS}$

### **Classical viewpoint:**



**Type A:** Nuclear medium effect, "quenched" couplings **Type B:** Two-nucleon effects

Both computed with NR nuclear models!

Jaus and Rasche, 1990 PRD; Barker et al., 1992 NPA; Towner, 1992 NPA, 1994 PLB

### **Modern viewpoint:**

 $\delta_{\rm NS}$  in terms of the difference between the nuclear and nucleon  $\gamma \text{W-box diagram}$ 



Wick-rotation of the loop integral:



The first two terms probe the nuclear response function:

$$R^{xy}(\nu, Q^2) \sim \sum_X \delta(M + q_0 - E_X) \langle f | J_{\text{em}}^x | X \rangle \langle X | J_W^y | i \rangle$$
  
See Francesca Bonaiti's talk



Can be studied using ab-initio methods! See Michael Gennari's talk 45

If the daughter nucleus is an **excited state**:



### A **residue contribution** from pole in 3<sup>rd</sup> quadrant

46

**Residue** due to a low-lying  $J^P = 1^+$  state:

$$\mathfrak{Res}T_3 \propto \langle f(0^+) | J_{\mathrm{em}}^x(\vec{q}) | f(1^+) \rangle \langle f(1^+) | J_W^y(-\vec{q}) | i(0^+) \rangle$$
M1-transition GT-transition

Matrix elements can be inferred from M1 and GT-transition rates!

|                                               | GT, $\log_{10} ft$ (s) | M1, $t_{1/2}$     |
|-----------------------------------------------|------------------------|-------------------|
| $^{10}C \rightarrow ^{10}B$                   | 3.0426(7)              | 4.9(2.1) fs       |
| $^{14}\text{O}{ ightarrow}^{14}\text{N}$      | 7.279(8)               | $68(3)  {\rm fs}$ |
| $^{18}\mathrm{Ne}{ ightarrow}^{18}\mathrm{F}$ | 3.091(4)               | 1.77(31) fs       |
| $^{22}Mg \rightarrow ^{22}Na$                 | 3.64                   | 19.6(7)  ps       |
| $^{30}S \rightarrow ^{30}P$                   | 4.322(11)              | 96(10)  fs        |

From IAEA / NNDC website

Motivations for future experiments!

Ab-initio calculation? See Thomas Papenbrock's talk

# Outline

- **1.** Precision frontier and the CKM unitarity
- **2.**  $V_{ud}$  from beta decays
- **3.** Inputs at tree-level
  - Weak decay form factors
  - Solution States Stat
- 4. Inputs at loop-level
  - > Nucleus-independent radiative corrections
  - > Nucleus-dependent radiative corrections
- 5. Summary and outlook

## **Current quoted value:**

$$|V_{ud}|_{0^+} = 0.97361(5)_{\exp}(6)_{\delta'_R}(4)_{\delta_{\rm C}}(28)_{\delta_{\rm NS}}(10)_{\rm RC}$$

Gorchtein and CYS, 2311.00044

## Included:

- > (Averaged) new calculations of  $\Delta_R^{V}$
- > Preliminary re-evaluation of  $\delta_{NS}$

## **NOT Included:**

- Fully data-driven determination of *ft*-values
- > Ab-initio calculation of  $\delta_{c}$  and  $\delta_{NS}$

# Result is preliminary, use with care!!

# Valuable inputs in the future:

## **Experiment:**

- > Nuclear charge radii
- > Nuclear M1-transition rates
- > Nucleon/nuclear structure functions

Lattice QCD:

Independent evaluation of nucleon structure functions

>

>

## **Ab-initio calculation:**

 $\succ$  Controlled studies of  $\delta_{\rm C}$  and  $\delta_{\rm NS}$ 

>