

Towards heavy-mass ab initio nuclear structure: Open-shell Sn isotopes via Bogoliubov coupled cluster theory

Workshop on Progress in Ab Initio Nuclear Theory - TRIUMF

Supervisors Thomas Duguet Riccardo Raabe

February 28, 2024

Co-supervisor Alexander Tichai

Open-shell frontier of ab initio many-body methods

- Open-shell nuclei
 - Vast majority
 - Strongly correlated
 - Spectroscopy at very frontier
- Push to heavier systems
 - Polynomial expansion methods required
- Single-refence symmetry-conserving approaches fail
 - Multi-reference techniques
 - Valence-space methods
 - Symmetry-breaking approaches
- Singly open-shell nuclei break particle-number symmetry
 - **Bogoliubov quasi-particle** framework
 - Grand canonical potential $\Omega \equiv H \lambda A$

KU LEUVEN

search Foundation

Open-shell frontier of ab initio many-body methods

- Open-shell nuclei
 - Vast majority

Duch to hanvior avotam

- Strongly correlated
- Spectroscopy at very frontier

50 46 42

H. Hergert, Front in Phys. 8 (2020) 379

Equation-of-motion Bogoliubov coupled cluster (EOM-BCC)

= non-perturbative correlation expansion method for ground and excited states of singly open-shell nuclei

- Valence-space methods
- Symmetry-breaking approaches
- Singly open-shell nuclei break particle-number symmetry
 - **Bogoliubov quasi-particle** framework
 - Grand canonical potential $\Omega \equiv H \lambda A$

KU LEUVEN

Bogoliubov coupled cluster (BCC)

- BCC extends standard CC to singly open-shell nuclei [1]
- Exponential Ansatz $|\Psi_0^A\rangle = e^{\mathcal{T}}|\Phi\rangle$

where
$$\mathcal{T} \equiv \frac{1}{2!} \sum_{k_1 k_2} t_{k_1 k_2} \beta_{k_1}^{\dagger} \beta_{k_2}^{\dagger} + \frac{1}{4!} \sum_{k_1 k_2 k_3 k_4} t_{k_1 k_2 k_3 k_4} \beta_{k_1}^{\dagger} \beta_{k_2}^{\dagger} \beta_{k_3}^{\dagger} \beta_{k_4}^{\dagger} + \cdots$$

• Special care to **constrain** $\langle A \rangle$ (details on poster)

Quasi-particle creation operators

Unitary mix of single-particle creation and annihilation operators $\{c_p^{\dagger}, c_p\}$ $\beta_k^{\dagger} = \sum_p U_{pk} c_p^{\dagger} + V_{pk} c_p$

Excitation amplitudes Solutions of a set of non-linear algebraic equations which must be solved iteratively

 $\left\langle \Phi^{k_1 k_2 k_3 \cdots} \middle| \Omega \, e^{\mathcal{T}} \middle| \Phi \right\rangle_{\mathrm{C}} = 0$

- In practice, truncate to **single** and **doubles** excitations (BCCSD) $T \approx T_1 + T_2$
- Recently implemented in spherical (**J-scheme**) formulation
 - Non-trivial angular-momentum-coupling automated by AMC [2]

Immense speed up & reduction in storage cost

BCC benchmark against VS-IMSRG

A. Tichai, PD, T. Duguet, Phys. Lett. B (submitted), [arXiv:2307.15619]

- BCCSD benchmark against VS-IMSRG(2) in Ca chain
- BCCSD error band built from estimated many-body uncertainties

Take away

- Agreement withing uncertainties
- Consistent dripline prediction

Heavy-mass BCCSD calculations

• BCCSD for heavy tin isotopes: ¹⁰⁰Sn – ¹⁸⁰Sn

Take away

- Shown to be scalable up to ¹⁸⁰Sn
- Flat trend in S_{2n} impedes drip line prediction
- Ongoing effort to reduce uncertainty
 - Implementation of leading-order triple excitations
 - Push basis size: natural orbitals + IT

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Extension to nuclear charge radii

• Evaluation of nuclear charge radii

Take away

- Good agreement with VS-IMSRG
- Distance to experiment known deficiency of EM1.8/2.0 interaction
- Future studies
 - Investigate kinks at shell closures
 - Skin thickness study in heavy tins

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

- Computationally efficient CC formulation applicable to open-shell nuclei
- J-scheme implementation shown to be scalable up to heavy tin isotopes
- Once combined with equation-of-motion techniques

Spectroscopy of heavy singly open-shell nuclei from first principles

Collaboration

T. Duguet B. Bally J. P. Ebran M. Frosini

- A. Roux
- A. Scalesi
- V. Somà
- G. Stellin
- L. Zurek

U. Vernik

A. Tichai R. Roth

G. Hagen

Many-body uncertainty

 $\epsilon \equiv \epsilon_{\text{FBS}} + \epsilon_{3\text{NB}} + \epsilon_{\text{PNO2B}} + \epsilon_{\text{CC}} + \epsilon_{\text{PNR}}$

<u>in Sn</u>

ϵ_{FBS}	finite basis size (e_{\max})	$\sim 2\%$ of <i>E</i>
$\epsilon_{3\mathrm{NB}}$	three-body truncation $(E_{3\max})$	$\sim 0.4 \text{ MeV}$
$\epsilon_{\mathrm{PNO2B}}$	particle-number-conserving normal-ordered 2B	$\sim 2\%$ of <i>E</i>
$\epsilon_{\rm CC}$	CC wavefunction truncation (BCCSD)	~ 8% of $E_{\rm corr}$ (attractive)
ϵ_{PNR}	lacking particle-number-restoration	$\sim 0.3 \text{ MeV}$

Towards heavy-mass ab initio nuclear structure: Open-shell Sn isotopes via Bogoliubov coupled cluster theory

Pepijn DEMOL¹, Alexander TICHAI², Thomas DUGUET^{1,3}

KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
 IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Open-shell frontier of *ab initio* many-body methods

Heavy-mass BCC calculations

- Total ground-state binding energy along calcium and tin chain comparing [4]
 - Hartree-Fock-Bogoliubov (HFB)
 - Bogoliubov many-body perturbation theory (BMBPT(2)) [5]
 - Valence-space in-medium similarity renormalization group (VS-IMSRG(2)) [6]
 - BCCSD

Quasi-particle formalism

• Quasi-particle operators defined via unitary **Bogoliubov transformation**

 $\beta_k = \sum_p U^*_{pk} c_p + V^*_{pk} c^{\dagger}_p$

- Corresponding vacuum serves as the **reference state** $|\Phi\rangle \equiv C \prod_{k} \beta_{k} |0\rangle$
- Grand potential operator Ω expressed in quasi-particle basis

 $\Omega \equiv H - \lambda A = \Omega^{00} + \Omega^{20} + \Omega^{11} + \Omega^{02} + \Omega^{40} + \Omega^{31} + \dots + \Omega^{60} + \dots$

- NN + 3N forces derived from chiral EFT: EM 1.8/2.0 [7]
- 3N matrix elements stored using reduced NO2B format [8]

- BCCSD agrees with VS-IMSRG within uncertainties
- Perturbative BMBPT performs well thanks to softness of EM 1.8/2.0 interaction
- Error band built from ad hoc estimation of many-body uncertainties:
 finite basis + 3-body basis + normal-ordered 2-body + CC truncation + particle-number restoration

Bogoliubov coupled cluster (BCC)

- BCC extends standard CC to singly open-shell nuclei [1]
- Exponential Ansatz $|\Psi_0^A\rangle = e^{\mathcal{T}}|\Phi\rangle$ where $\mathcal{T} \equiv \frac{1}{2!} \sum_{k_1k_2} t_{k_1k_2} \beta_{k_1}^{\dagger} \beta_{k_2}^{\dagger} + \frac{1}{4!} \sum_{k_2k_3k_4} t_{k_1k_2k_3k_4} \beta_{k_1}^{\dagger} \beta_{k_2}^{\dagger} \beta_{k_3}^{\dagger} \beta_{k_4}^{\dagger} + \cdots$
- BCCSD: truncate to **single** and **double** excitations $\mathcal{T} \approx \mathcal{T}_1 + \mathcal{T}_2$
- Non-Hermitian **similarity-transformed** grand potential operator $\tilde{\Omega} \equiv e^{-\mathcal{T}} \Omega e^{\mathcal{T}}$
- Ground-state energy $\Omega_0 = \langle \Phi | \tilde{\Omega} | \Phi \rangle = \langle \Phi | \Omega e^{\mathcal{T}} | \Phi \rangle_{C}$
- Unknown $t_{k_1k_2k_3\cdots}$ obtained from set of algebraic equations $\langle \Phi^{k_1k_2k_3\cdots} | \Omega e^{\mathcal{T}} | \Phi \rangle_{C} = 0$
 - Coupled non-linear equations solved iteratively $\mathcal{T}_N^{(i+1)} \equiv \mathcal{T}_N^{(i)} + \mathcal{R}_N^{(i)}(\Omega)$

Computational aspects

Extension to nuclear charge radii

- Evaluation of *rms* charge radii
 - → via perturbative Λ -BCCSD, where $\Lambda \approx \mathcal{T}^{\dagger}$
- Good agreement with VS-IMSRG(2)
- Distance to experiment attributable to interaction
- Non-negligible impact of dynamical correlations
- Easily extendable to neutron-rich tin isotopes

Future study

• First-principle predictions of differential charge radii across N=82 shell closure

Conclusion and outlook

Conclusion

- Computationally efficient CC formulation applicable to open-shell nuclei
- Effective particle-number constraint in BCC, applicable to BMBPT
- First-time implementation of BCCSD in symmetry-restricted J-scheme form
 Shown to be scalable up to heavy tin isotopes
- **J-scheme** formulation: exploit spherical symmetry of Ω , $|\Phi\rangle$ and quasi-particle basis
 - → Non-trivial angular-momentum-coupling automated by AMC [2]
- Convergence accelerated using **mixing**: direct inversion of iterative subspace
- **Constrain** $\langle A \rangle$ by updating $\Omega^{(i)} \equiv H \lambda^{(i)}A$ at each BCC iteration
- $\Rightarrow \lambda^{(i)} \text{ determined from } \Delta A^{(i+1)} = \left\langle \Phi \left| A \left(\mathcal{T}_1^{(i)} + \mathcal{R}_1(H) \right) \right| \Phi \right\rangle_c \lambda^{(i)} \left\langle \Phi \left| A \mathcal{R}_1(A) \right| \Phi \right\rangle_c = 0$

<u>Outcomes</u>

- $\langle A \rangle$ constrained at each iteration
- Computationally cheap
- Overall convergence accelerated
- Applicable to BMBPT [3]

<u>Outlook</u>

- Ongoing implementation of leading-order triples corrections for improved accuracy
- Description of excited states from equation-of-motion techniques
- Reduced basis size, natural orbitals + IT, to improve precision for heavy nuclei
- Implementation of electromagnetic observables to perform spectroscopy
- Generation of *ab initio* pseudo-data to constrain future EDF parametrizations
- Spectroscopy of heavy singly open-shell nuclei from first principles
- [1] A. Signoracci et al., Phys. Rev. C 91, 064320 (2015)
 [2] A. Tichai et al., Eur. Phys. J. A 56 10 272 (2020)
 [3] P. Demol, A. Tichai, T. Duguet, in preparation (2024)
 [4] A. Tichai, P. Demol, T. Duguet, submitted (2024) [arXiv:2307:15619]
 [5] A. Tichai et al., Phys. Lett. B 786 195–200 (2018)
 [6] R. S. Stroberg et al., Phys. Rev. Lett. 126, 022501 (2021)
 [7] K. Hebeler et al., Phys. Rev. C 83, 031301(R) (2011)
 [8] T. Miyagi et al., Phys. Rev. C 105(1), 014302 (2022)

