Consistent Description of Collective Excitations in the In-Medium (S)RPA

TECHNISCHE UNIVERSITÄT DARMSTADT

Michelle Müller

A. Obertelli and H. Sagawa. *Modern Nuclear Physics – From Fundamentals to Frontiers*. 2021.

29.02.2024 | Institute of Nuclear Physics | Michelle Müller | 1

(Second-Order) Random-Phase Approximation

- investigation of collective excitations
- exact ground state contains correlations

- main focus: calculation of (S)RPA transition strengths
- usually: application of one-body transition matrix elements
- extension of strength calculations to two-body contributions
 - → possibility to involve free-space or in-medium SRG evolved EM operator
- calculation of SRPA transition strengths with two-body operator also leads to non-vanishing 2p2h contributions

Comparison of the Methods

HF-(S)RPA

- (S)RPA in Hartree-Fock basis
- ground-state correlations treated in (S)RPA formalism
- strength calculation usually via one-body matrix elements

Comparison of the Methods

HF-(S)RPA	IM-(S)RPA	
(S)RPA in Hartree-Fock	 input: IM-SRG evolved	
basis	Hamiltonian	
ground-state correlations	 ground-state correlations	
treated in (S)RPA formalism	taken care of by IM-SRG	
strength calculation usually	 strength calculation usually	
via one-body matrix	via one-body matrix	
elements	elements	

Comparison of the Methods

HF-(S	5)RPA	IM-(S)RPA	IM-(S)RPA+
 (S)RPA in Ha basis 	rtree-Fock	 input: IM-SRG evolve Hamiltonian 	 input: IM-SRG evolved Hamiltonian and IM-SRG evolved EM operator
 ground-state treated in (S) 	correlations RPA formalism	 ground-state correlation taken care of by IM-S 	 ons RG strength calculation via one- and two-body matrix
 strength calc via one-body elements 	ulation usually matrix	 strength calculation us via one-body matrix elements 	sually elements consistent description

Hessisches Kompetenzzentrum

für Hochleistungsrechnen

SFB 1245

Thank you for your attention!

