Deformed natural orbitals for *ab initio* calculations

29 February 2024

NUMER

Collaborators:

V. Somà T. Duguet

M. Frosini

PAINT2024 - Workshop on Progress in Ab Initio Nuclear Theory

UNIVERSITE PARIS-SACLAY

This work has received funding from the *European Union's Horizon 2020 research and innovation program* under grant agreement No 800945 — NUMERICS — H2020-MSCA-COFUND-2017

International PhD Program in Numerical Simulation at CEA

Deformed Bogoliubov MBPT

- Strength of the method:
 - Based on symmetry breaking reference states (U(1), SO(3))
 - Ideal to explore **doubly-open shell** systems
 - Low-polynomial scaling
 - Cheap yet accurate (for low-momentum interactions)
 - **Bulk observables** (energies, radii), axial deformation β_2
- Ongoing projects:
 - Large scale calculations along the nuclear chart
 - Specific applications around the N = 20 island of inversion
 - Role of correlations in semi-magic (**spherical**) vs open-shell (**deformed**) nuclei

dBMBP⁷

Extraction of **natural orbitals** from the correlated density matrix $\rho_{\alpha\beta} = \langle \Psi | c_{\alpha}^{\dagger} c_{\beta} | \Psi \rangle$

[†]M. Frosini et al., Eur. Phys. J. A **57**, 151 (2021)

Natural Orbitals

[†]J. Hoppe et al., Phys. Rev. C **103**, 014321

Basis informed by MB correlations suited to **efficiently capture correlations** in the wave-functions

- Main objective: reduce the cost of an expensive calculation
- How it can be done: via an **auxiliary cheaper calculation**

Deformed Natural Orbitals

[†]A. Scalesi et al., *in preparation*

- Extension to extract natural orbitals for **open-shell** nuclei
- Based on dBMBPT(2) performed on top of the HFB minimum w.r.t. the axial deformation β_2

Total Energy Surface (TES)

Alberto Scalesi - PAINT 2024 - Workshop on progress in ab initio... - 2024

Convergence of the ground-state energy

[†]A. Scalesi et al., *in preparation*

• NAT are $\hbar\Omega$ -independent, the advantage of NAT w.r.t. HO is $\hbar\Omega$ -dependent

- Here the optimal $\hbar\Omega$ is showed, which leads to the minimal gain for NAT
- Typical minimal gain of **2** e_{max} in all the studied cases for a relative precision of 0.5%
- Significant reduction in the **number of states** for *N*^{*p*} scaling methods in m-scheme

For a
$$N^5$$
 method $\frac{N^{p=5}[e_{max} = 10]}{N^{p=5}[e_{max} = 8]} = 16.6$

$\hbar\Omega$ -dependency of the wave functions

Single-particle radii

Importance truncation

