Ab initio description of monopole resonances in light- and medium-mass nuclei

PAINT2024 – Workshop on Progress in Ab Initio Nuclear Theory TRIUMF, Vancouver

February 27th, 2024

Andrea Porro Technische Universität Darmstadt

- Physical introduction
- Existing ab initio theoretical tools

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools
- 2 Ab initio PGCM
 - Formalisms
 - Uncertainty quantification

Chosen results

3

Selected applications

- Shape coexistence
- Deformation

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

3

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

3

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

• Preliminary incompressibility results

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Conclusions and perspectives

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

Preliminary incompressibility results

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Conclusions and perspectives

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

• Preliminary incompressibility results

[Pictures from Dytrych et al., PRL, 2020]

[[]Pictures from Dytrych et al., PRL, 2020]

EOM and VS extensions

- IMSRG and CC
- Suited for **weakly-collective** excitations only

EOM and VS extensions

- IMSRG and CC
- Suited for weakly-collective excitations only

CC-LIT Lorenz integral transform (sperical)
 SA-NCSM Application to deformed systems (²⁰Ne)

[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013] [Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]

EOM and VS extensions

- IMSRG and CC
- Suited for weakly-collective excitations only

CC-LIT Lorenz integral transform (sperical) **SA-NCSM** Application to deformed systems (²⁰Ne)

[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013] [Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]

(Q)RPA

• Spherical (Q)RPA, 2nd RPA, CC-RPA, IMSRG-RPA, IMSRG-2nd RPA

[R. Trippel, PhD Thesis, 2016]

EOM and VS extensions

- IMSRG and CC
- Suited for weakly-collective excitations only

CC-LIT Lorenz integral transform (sperical) **SA-NCSM** Application to deformed systems (²⁰Ne)

[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013] [Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]

(Q)RPA

- Spherical (Q)RPA, 2nd RPA, CC-RPA, IMSRG-RPA, IMSRG-2nd RPA
- SCGF, RPA with dressed propagators

[R. Trippel, PhD Thesis, 2016] [Barbieri, Raimondi, PRC, 2019]

 $\sigma_{v}(\omega)/4\pi^{2}\alpha\omega \, [mb/MeV]$

EOM and VS extensions

- IMSRG and CC
- Suited for weakly-collective excitations only

CC-LIT Lorenz integral transform (sperical) **SA-NCSM** Application to deformed systems (²⁰Ne)

[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013] [Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]

(Q)RPA

- Spherical (Q)RPA, 2nd RPA, CC-RPA, IMSRG-RPA, IMSRG-2nd RPA
- SCGF, RPA with dressed propagators
- (Q)RPA for axially- and triaxally-deformed systems

[R. Trippel, PhD Thesis, 2016]

[Barbieri, Raimondi, PRC, 2019]

[Beaujeault-Taudière, Frosini, Ebran, Duguet, Roth, Somà, PRC, 2023]

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

3 Chosen results

Conclusions and perspectives

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

• Preliminary incompressibility results

Schrödinger equation $H |\Psi_n\rangle = E_n |\Psi_n\rangle$

Schrödinger equation

$$H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$$

Open-shell systems

Schrödinger equation

$$H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$$

Open-shell systems

Schrödinger equation $H |\Psi_n\rangle = E_n |\Psi_n\rangle$

Open-shell systems

Symmetry-breaking reference states

Schrödinger equation

 $H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$

Open-shell systems

Symmetry-breaking reference states

1 Constrained HFB solutions $|\Phi(q)
angle$

Schrödinger equation

 $H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$

Open-shell systems

1 Constrained HFB solutions

 $|\Phi(q)\rangle$ Generator coordinates (q can be any coordinate)

Symmetry-breaking reference states

Schrödinger equation

 $H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$

Open-shell systems

Strong static correlations

 $|\Phi(q)\rangle$

1 Constrained HFB solutions

2 PGCM Ansatz

$$|\Psi_n\rangle = \int \mathrm{d}q \, f_n(q) \, |\Phi(q)\rangle$$

Generator coordinates (q can be any coordinate)

Symmetry-breaking reference states

E_{HFB} (q)^h q

Schrödinger equation

 $H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$

Symmetry-breaking reference states

Generator coordinates

(q can be any coordinate)

Open-shell systems

Strong static correlations

 $|\Phi(q)\rangle$

1 Constrained HFB solutions

2 PGCM Ansatz

Linear coefficients

Europhie Participants (q) A q

Schrödinger equation

 $H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$

Open-shell systems

7

 $|\Phi(q)\rangle$

Strong static correlations

1 Constrained HFB solutions

2 PGCM Ansatz

 $|\Psi_n\rangle = \int \mathrm{d}q f_n(q) \Phi(q)\rangle$

Linear coefficients

Generator coordinates (q can be any coordinate)

Symmetry-breaking reference states

3 HWG Equation

Variational method

$$\delta \frac{\langle \Psi_n | H | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle} = 0$$

Schrödinger equation

 $H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle$

Symmetry-breaking reference states

Generator coordinates

(q can be any coordinate)

Open-shell systems

Strong static correlations

 $|\Phi(q)\rangle$

1 Constrained HFB solutions

2 PGCM Ansatz

Linear coefficients

3 HWG Equation

Variational method $\delta rac{\langle \Psi_n | H | \Psi_n
angle}{\langle \Psi_n | \Psi_n
angle} = 0$

Schrödinger-like equation $\int \left[\mathcal{H}(p,q) - E_n \, \mathcal{N}(p,q) \right] f_n(q) \, \mathrm{d}q = 0$ Kernels evaluation

 $\mathcal{H}(p,q) \equiv \langle \Phi(p) | H | \Phi(q) \rangle$ $\mathcal{N}(p,q) \equiv \langle \Phi(p) | \Phi(q) \rangle$

- · A

Schrödinger equation

 $|\Phi(q)\rangle$

1 Constrained HFB solutions

Linear coefficients

Generator coordinates (q can be any coordinate)

3 HWG Equation

Variational method $\delta \frac{\langle \Psi_n | H | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle} = 0$

Schrödinger-like equation $\int \left[\mathcal{H}(p,q) - E_n \,\mathcal{N}(p,q) \right] f_n(q) \,\mathrm{d}q = 0$

EHFB (q)

Kernels evaluation

Emin

 $\mathcal{H}(p,q) \equiv \langle \Phi(p) | H | \Phi(q) \rangle$ $\mathcal{N}(p,q) \equiv \langle \Phi(p) | \Phi(q) \rangle$

Schrödinger equation

 $|\Phi(q)\rangle$

1 Constrained HFB solutions

2 PGCM Ansatz

Linear coefficients

Generator coordinates (q can be any coordinate)

3 HWG Equation

Variational method $\delta \frac{\langle \Psi_n | H | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle} = 0$

+ Projection

Schrödinger-like equation $\int \left[\mathcal{H}(p,q) - E_n \,\mathcal{N}(p,q) \right] f_n(q) \,\mathrm{d}q = 0$ Kernels evaluation

 $\mathcal{H}(p,q) \equiv \langle \Phi(p) | H | \Phi(q) \rangle$ $\mathcal{N}(p,q) \equiv \langle \Phi(p) | \Phi(q) \rangle$

$$E_{HFB}(q)^{h}$$

 q
 E_{min}

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

 ω [MeV]

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
 - Energy difference: position of peaks $S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_{0} \rangle|^2 \delta(E_{\nu} E_{0} \omega)$

Related moments

٠

$$\begin{split} m_k &\equiv \int_0^\infty S_{00}(\omega) \,\omega^k \,d\omega \\ &= \sum_\nu (E_\nu - E_0)^k |\langle \Psi_\nu | r^2 | \Psi_0 \rangle|^2 \end{split}$$

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Related moments $m_k \equiv$

$$S_{00}(\omega) \omega^{k} d\omega$$
$$= \sum_{\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | r^{2} | \Psi_{0} \rangle|^{2}$$

 $S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$

Quantify the most relevant features of the strength $\bar{E}_1 = \frac{m_1}{m_0}$ $\sigma^2 = \frac{m_2}{m_0} - \left(\frac{m_1}{m_0}\right)^2 \ge 0$

ſ∞

Studied quantity: monopole strength

- Transition amplitudes: height of peaks ٠
- Energy difference: position of peaks

Related moments $m_k \equiv \int_{-\infty}^{\infty} S_{00}(\omega) \omega^k d\omega$

$$= \sum_{\nu} (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2$$

Quantify the most relevant features of the strength $\bar{E}_1 = \frac{m_1}{m_0}$ $\sigma^2 = \frac{m_2}{m_0} - \left(\frac{m_1}{m_0}\right)^2 \ge 0$

 $S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$

200

150

100

30

40

50

Ab-initio PGCM and QRPA consistent numerical settings (systematic study in ⁴⁶Ti)

Quantities expanded on harmonic oscillator basis (characterised by $\hbar\omega$, e_{max} , e_{3max})

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \, \omega^k \, d\omega$

$$= \sum_{\nu}^{J_0} (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2$$

Quantify the most relevant features of the strength $\bar{E}_1 = \frac{m_1}{m_0}$ $\sigma^2 = \frac{m_2}{m_0} - \left(\frac{m_1}{m_0}\right)^2 \ge 0$

Ab-initio PGCM and QRPA **consistent numerical settings** (systematic study in ⁴⁶Ti)

- Quantities expanded on harmonic oscillator basis (characterised by $\hbar\omega$, e_{max} , e_{3max})
- Family of chiral NN + in-medium 3N interactions (NLO, N2LO and N3LO)
 - T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-plus three-nucleon interactions for accurate nuclear structure studies", *Phys. Lett. B*, 808, 2020
 - In-vacuum SRG evolution (α =0.04 fm⁴, α =0.08 fm⁴)
 - M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, "In-medium k-body reduction of n-body operators", *The European Physical Journal A*, *57*(4), 2021

 $S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$

Uncertainty budget

SRG dependence Many-body truncation Strong centroid dependence ~ 10 % • Comparison to PGCM-PT Dispersion relative error ~ 20 % • Only tested for **low-lying exc** Truncates both H and many-body Correlated to SRG and generator coords Generator coordinates choice **Empirical knowledge**, two coords **r** and β_2 More systematic choice needed Three-body treatment NO2B approximation 1-2 % uncertainty in low-lying exc Not tested for giant resonances • Hamiltonian parameters C 3 me C WAX • **LEC** dependence of χ forces Few interactions compared • Correlated to SRG Need for emulators (EC)

Chiral Order

- Good overall convergence ٠
- Centroid relative error ~ 1,6 % ٠
- Dispersion relative error ~ 9,8 % .

Harmonic Oscillator width

- Good overall convergence
- Centroid relative error ~ 1,6 %
- Dispersion relative error ~ 6 %

- Good overall convergence •
- Centroid relative error ~ 0.6 %
- Dispersion relative error ~ 1,7 %
- e_{3max} not studied (14 safe for GS)

Good overall convergence

- Good overall convergence
- Centroid relative error ~ 0,6 %

- Good overall convergence
- Centroid relative error ~ 0,6 %
- Dispersion relative error ~ 1,7 %

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Conclusions and perspectives

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

• Preliminary incompressibility results

Shape coexistence [Jenkins et al., 2012]

• Oblate GS and prolate-shape isomer

Shape coexistence [Jenkins et al., 2012]

- Oblate GS and prolate-shape isomer •
- Proper study of shape coexistence in PGCM •

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM

.

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
 - Shape coexistence but weak mixing

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
 - Shape coexistence but weak mixing
 - Nuclei with stronger signature ? 12

40 3.6 • • 30 [MeV] 3.4 [^E] 3.2 یں 20 س^{یت} $E_{_{
m HFB}}$ 3 10 2.8 0 0.5 -0.5 0 1 -1β2

Total Energy Surface $E_{HFB}(\beta_2, r)$

. .

· · ·

- Focus on the prolate-shape isomer
- Coupling to GQR generates splitting
- X High peak = shifted "spherical" breathing mode
- **x** Low peak = induced by coupling to GQR (K=0)
- Two-peak GMR on the prolate shape isomer

- Focus on the prolate-shape isomer
- Coupling to GQR generates splitting
- X High peak = shifted "spherical" breathing mode
- **x** Low peak = induced by coupling to GQR (K=0)
- Two-peak GMR on the prolate shape isomer

Comparison to experimental data

Comparison to experimental data

Comparison to experimental data

Ab initio PGCM nicely reproduces the experimental data

• Better description of the main resonance and fragmentation

Experimental data are useful and promising to test different many-body methods

Data are not unambiguous, i.e. higher resolution would be beneficial

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Conclusions and perspectives

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

• Preliminary incompressibility results

Projection in GCM and QRPA

(Q) R P A

DIFFERENT FLAVOURS OF SYMMETRY BREAKING AND RESTORATION

Symmetry breaking

GCM

Symmetry conserving

Projection in GCM and QRPA

(2) [Federschmidt and Ring, NucPhysA, 1985]

DIFFERENT FLAVOURS OF SYMMETRY BREAKING AND RESTORATION

(2) [Federschmidt and Ring, NucPhysA, 1985]

DIFFERENT FLAVOURS OF SYMMETRY BREAKING AND RESTORATION

(1) [Erler, PhD Thesis, TUD, 2012]

(2) [Federschmidt and Ring, NucPhysA, 1985]

Symmetry conserving

GCM : symmetry-breaking solutions $|\text{GS}\rangle_{\text{def}}$ $|\omega\rangle_{\text{def}}$ PGCM : symmetry-conserving solutions $|\text{GS}\rangle_{\text{sym}}$ $|\omega\rangle_{\text{sym}}$

GCM : symmetry-breaking solutions

PGCM : symmetry-conserving solutions (

$$\begin{split} |\mathrm{GS}\rangle_{\mathrm{def}} & |\omega\rangle_{\mathrm{def}} \\ |\mathrm{GS}\rangle_{\mathrm{sym}} & |\omega\rangle_{\mathrm{sym}} \end{split}$$

Projection effects

- Not too dissimilar
- Increased **fragmentation** (e.g. ²⁴Mg)
- More quantitative agreement

GCM : symmetry-breaking solutions

PGCM : symmetry-conserving solutions $|GS\rangle_{sym}$

 $|\mathrm{GS}\rangle_{\mathrm{def}}$

 $|\omega\rangle_{\rm def}$

 $|\omega\rangle_{\rm sym}$

Projection effects

- Not too dissimilar
- Increased **fragmentation** (e.g. ²⁴Mg)
- More quantitative agreement

Can we treat projection a posteriori?

GCM : symmetry-breaking solutions $|\text{GS}\rangle_{\text{def}}$ $|\omega\rangle_{\text{def}}$ PGCM : symmetry-conserving solutions $|\text{GS}\rangle_{\text{sym}}$ $|\omega\rangle_{\text{sym}}$

PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

GCM : symmetry-breaking solutions $|\text{GS}\rangle_{\text{def}}$ $|\omega\rangle_{\text{def}}$ PGCM : symmetry-conserving solutions $|\text{GS}\rangle_{\text{sym}}$ $|\omega\rangle_{\text{sym}}$

PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state $|\text{ROT}\rangle = \hat{R}(\Omega) |\text{GS}\rangle_{\text{def}}$

 $|\mathrm{GS}\rangle_{\mathrm{def}}$ $|\omega\rangle_{\rm def}$ GCM : symmetry-breaking solutions $|\omega\rangle_{\rm sym}$ $|\mathrm{GS}\rangle_{\mathrm{sym}}$ PGCM : symmetry-conserving solutions PAV GCM: projection of symmetry-breaking solution Anomalous spectrum ٠ Zero-frequency rotations (Goldstone modes) • Born-Oppenheimer-like approximation ٠ $|\text{ROT}\rangle = \hat{R}(\Omega) |\text{GS}\rangle_{\text{def}}$ Rotational state $\langle \mathrm{ROT} | \omega \rangle_{\mathrm{sym}} = 0$ Non-vanishing Coupling $a_{\omega} = \langle \text{ROT} | \omega \rangle_{\text{def}}$

 $|\mathrm{GS}\rangle_{\mathrm{def}}$ $|\omega\rangle_{\rm def}$ GCM : symmetry-breaking solutions $|\mathrm{GS}\rangle_\mathrm{sym}$ $|\omega\rangle_{\rm sym}$ PGCM : symmetry-conserving solutions PAV GCM: projection of symmetry-breaking solution Anomalous spectrum • Zero-frequency rotations (Goldstone modes) • Born-Oppenheimer-like approximation ٠ $|\text{ROT}\rangle = \hat{R}(\Omega) |\text{GS}\rangle_{\text{def}}$ Rotational state $\langle \mathrm{ROT} | \omega \rangle_{\mathrm{sym}} = 0$ Non-vanishing Coupling $a_{\omega} = \langle \text{ROT} | \omega \rangle_{\text{def}}$

$$|\omega\rangle_{\rm def} = N_{\rm rot} |{
m ROT}\rangle + N_{\rm vib} |{
m VIB}\rangle$$

 $|\mathrm{GS}\rangle_{\mathrm{def}}$ $|\omega\rangle_{\rm def}$ GCM : symmetry-breaking solutions $\ket{\mathrm{GS}}_{\mathrm{sym}}$ $|\omega\rangle_{\rm sym}$ PGCM : symmetry-conserving solutions PAV GCM: projection of symmetry-breaking solution Anomalous spectrum Zero-frequency rotations (Goldstone modes) • Born-Oppenheimer-like approximation ٠ $|\text{ROT}\rangle = \hat{R}(\Omega) |\text{GS}\rangle_{\text{def}}$ Rotational state $\langle \mathrm{ROT} | \omega \rangle_{\mathrm{sym}} = 0$ Non-vanishing Coupling $a_{\omega} = \langle \text{ROT} | \omega \rangle_{\text{def}}$ $|\omega\rangle_{\rm def} = N_{\rm rot} |{\rm ROT}\rangle + N_{\rm vib} |{\rm VIB}\rangle$

Can be subtracted!

 $|\mathrm{GS}\rangle_{\mathrm{def}}$ $|\omega\rangle_{\rm def}$ GCM : symmetry-breaking solutions $|\omega\rangle_{
m sym}$ $|\mathrm{GS}\rangle_{\mathrm{sym}}$ PGCM : symmetry-conserving solutions PAV GCM: projection of symmetry-breaking solution Anomalous spectrum • Zero-frequency rotations (Goldstone modes) • Born-Oppenheimer-like approximation ٠ $|\text{ROT}\rangle = \hat{R}(\Omega) |\text{GS}\rangle_{\text{def}}$ Rotational state $\langle \text{ROT} | \omega \rangle_{\text{sym}} = 0$ Non-vanishing Coupling $a_{\omega} = \langle \text{ROT} | \omega \rangle_{\text{def}}$ $|\omega\rangle_{\rm def} = N_{\rm rot} |{\rm ROT}\rangle + N_{\rm vib} |{\rm VIB}\rangle$

Can be subtracted!

 $|\mathrm{GS}\rangle_{\mathrm{def}}$ $|\omega\rangle_{\rm def}$ GCM : symmetry-breaking solutions $|\omega\rangle_{\rm sym}$ $|\mathrm{GS}\rangle_{\mathrm{sym}}$ PGCM : symmetry-conserving solutions PAV GCM: projection of symmetry-breaking solution Anomalous spectrum • Zero-frequency rotations (Goldstone modes) • Born-Oppenheimer-like approximation ٠ $|\mathrm{ROT}\rangle = \hat{R}(\Omega) |\mathrm{GS}\rangle_{\mathrm{def}}$ Rotational state $\langle \mathrm{ROT} | \omega \rangle_{\mathrm{sym}} = 0$ Non-vanishing Coupling $a_{\omega} = \langle \text{ROT} | \omega \rangle_{\text{def}}$ $|\omega\rangle_{\rm def} = N_{\rm rot} |{\rm ROT}\rangle + N_{\rm vib} |{\rm VIB}\rangle$ Can be subtracted!

Observed both in GCM and RPA⁽¹⁾

- Does not depend on the many-body method
- Consequence of deformed ground state

 $|\mathrm{GS}\rangle_{\mathrm{def}}$ $|\omega\rangle_{\rm def}$ GCM : symmetry-breaking solutions $|\omega\rangle_{\rm sym}$ $|\mathrm{GS}\rangle_{\mathrm{svm}}$ PGCM : symmetry-conserving solutions PAV GCM: projection of symmetry-breaking solution Anomalous spectrum • Zero-frequency rotations (Goldstone modes) • Born-Oppenheimer-like approximation ٠ $|\mathrm{ROT}\rangle = \hat{R}(\Omega) |\mathrm{GS}\rangle_{\mathrm{def}}$ Rotational state $\langle \mathrm{ROT} | \omega \rangle_{\mathrm{sym}} = 0$ Non-vanishing Coupling $a_{\omega} = \langle \text{ROT} | \omega \rangle_{\text{def}}$ $|\omega\rangle_{\rm def} = N_{\rm rot} |{\rm ROT}\rangle + N_{\rm vib} |{\rm VIB}\rangle$

Rotations must be treated variationally

- PGCM already does
- Projected QRPA needed

Observed both in GCM and RPA⁽¹⁾

- Does not depend on the many-body method
- Consequence of deformed ground state

(1) INFN collaboration, G. Colò and D. Gambacurta

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Conclusions and perspectives

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

• Preliminary incompressibility results

From finite nuclei to Astrophysics

Symmetry energy

- IV GDR
- Dipole polarizability
- Neutron skin

From finite nuclei to Astrophysics

Symmetry energy

- IV GDR
- Dipole polarizability
- Neutron skin

Nuclear compressibility

• GMR

$$K_{\rm A} = (M/\hbar^2) \langle r^2 \rangle E_{\rm GMR}^2$$
$$\tilde{E}_k = \sqrt{\frac{m_{\rm k}}{m_{k-2}}} \qquad \bar{E}_1 = \frac{m_1}{m_0}$$

From finite nuclei to Astrophysics

Symmetry energy

- IV GDR
- Dipole polarizability
- Neutron skin

Nuclear compressibility

• GMR

Preliminary evaluation of K_{∞}

- Starting from deformed systems
- Extrapolation in **agreement** with commonly accepted values
- Systematic investigation in heavier systems (Sn, Mo isotopic chains, neutron rich)

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

3

Conclusions and perspectives

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

• Preliminary incompressibility results

Current frontiers

Perspectives

Perspectives

Perspectives

Thanks for the attention

Fechnische Universität Darmstadt

Alexander Tichai Robert Roth Achim Schwenk

Gianluca Colò Danilo Gambacurta cea

Thomas Duguet Vittorio Somà Mikael Frosini Benjamin Bally Jean-Paul Ebran Alberto Scalesi

Backup slides

• GRs can be interpreted as the first phonon of a collective excitation

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist ! Multi-phonon states

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist ! Multi-phonon states
- Not accessible to QRPA

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist ! Multi-phonon states
- Not accessible to QRPA

• GRs can be interpreted as the first phonon of a collective excitation

 $\log_{10} S_0 + 2$

- Higher phonons also exist ! Multi-phonon states
- Not accessible to QRPA

One-dimensional PGCM calculation

• PGCM predicts high-lying states

• GRs can be interpreted as the first phonon of a collective excitation

 $\log_{10} S_0 + 2$

- Higher phonons also exist ! Multi-phonon states
- Not accessible to QRPA

- PGCM predicts high-lying states
- Close to the harmonic oscillator eigen-solutions

[fm⁴MeV⁻¹]

400 0

200

 $B(E0)[0_{\chi}^{+}$

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist ! Multi-phonon states
- Not accessible to QRPA

- PGCM predicts high-lying states
- Close to the harmonic oscillator eigen-solutions
- Transitions maximised between neighbouring phonons

 $B(E0)[0_{\chi}^{+}$

GRs can be interpreted as the first phonon of a collective excitation •

2

 $\log_{10} S_0 + 2$

- Higher phonons also exist! Multi-phonon states •
- Not accessible to **QRPA** •

- PGCM predicts high-lying states
- Close to the harmonic oscillator eigen-solutions
- Transitions maximised between neighbouring phonons
 - Linear trend in the transition strength Х
• 2-D PGCM in the (r, β_2) plane

- 2-D PGCM in the (r, β_2) plane
- Good agreement with experiment

- 2-D PGCM in the (r, β_2) plane
- Good agreement with experiment
- Multi-phonon states observed

- 2-D PGCM in the (r, β_2) plane
- Good agreement with experiment
- Multi-phonon states observed
- Harmonicity well confirmed

Harmonic Oscillator width

PGCM : multi-reference unperturbed state

PGCM : multi-reference unperturbed state

(2) [Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

^{(1) [}Frosini, Duguet, Ebran and Somà, EPJA 58(62), 2022]

(2) [Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

(2) [Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

Ab initio

Exp

(1) [Frosini, Duguet, Ebran and Somà, EPJA 58(62), 2022]

(2) [Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

SRG dependence

SRG dependence

SRG dependence

A-body Hilbert space \mathcal{H}_{A} $|\Psi_k^{\rm A}\rangle = \Omega \Theta_k^{(0)}\rangle$ Wave operator action $\mathcal{H}_{\mathsf{A}}^{\mathsf{PGCM}}$ SRG ? PGCM subspace

[Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

One coordinate insufficient (deformed systems)

Two coordinates necessary: empirical knowledge r and β_2

- One coordinate insufficient (deformed systems)
- Two coordinates necessary: empirical knowledge **r** and β_2
- Additional coordinates ?

PGCM alone suited for ab initio?

One coordinate insufficient (deformed systems)

- Two coordinates necessary: empirical knowledge r and β_2
- Additional coordinates ?

[S. Bofos, ongoing] Systematic VS-PGCM study

Many possible directions

MCSM-like calculations (greedy algorithm)

Momentum-like coordinates (DGCM)

PGCM alone suited for ab initio?

Must exhaust the PGCM subspace

Mesh refinement

