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Studied quantity: monopole strength

• Transition amplitudes: height of peaks

• Energy difference: position of peaks

Ab-initio PGCM and QRPA consistent numerical settings (systematic study in 46Ti)

● Quantities expanded on harmonic oscillator basis (characterised by ħω, emax , e3max)

● Family of chiral NN + in-medium 3N interactions (NLO, N2LO and N3LO)
○ T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-plus three-nucleon interactions for 

accurate nuclear structure studies", Phys. Lett. B, 808, 2020

○ In-vacuum SRG evolution (α=0.04 fm4, α=0.08 fm4)

○ M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, “In-medium k-body reduction of n-body 
operators”, The European Physical Journal A, 57(4), 2021
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• NO2B approximation

• 1-2 % uncertainty in low-lying exc

• Not tested for giant resonances

• LEC dependence of χ forces

• Few interactions compared

• Correlated to SRG
• Need for emulators (EC)

• Empirical knowledge, two coords r and β2
• More systematic choice needed

• Strong centroid dependence ~ 10 %

• Dispersion relative error ~ 20 %

• Truncates both H and many-body

• Comparison to PGCM-PT 

• Only tested for low-lying exc

• Correlated to SRG and generator coords

• Good overall convergence

• Centroid relative error ~ 1,6 %

• Dispersion relative error ~ 9,8 %

• Good overall convergence

• Centroid relative error ~ 1,6 %

• Dispersion relative error ~ 6 %

• Good overall convergence

• Centroid relative error ~ 0,6 %

• Dispersion relative error ~ 1,7 %

• e3max not studied (14 safe for GS) 9
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• Good overall convergence
• Centroid relative error ~ 0,6 %
• Dispersion relative error ~ 1,7 %
• e3max not studied (14 safe for GS) [Myiagi et al., PRC, 2022]
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C o n c l u s i o n s a n d  p e r s p e c t i v e s

2 Ab initio PGCM
• Formalisms

• Uncertainty quantification Projection effects
• PAV and VAP strategies

• Rotation-vibration coupling

From finite nuclei to Astrophysics
• Preliminary incompressibility results

1 Giant Resonances
• Physical introduction

• Existing ab initio theoretical tools

3 Chosen results

Selected applications
• Shape coexistence

• Deformation

Out l ine



● Oblate GS and prolate-shape isomer

● Proper study of shape coexistence in PGCM

Ø Shape coexistence but weak mixing
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● Focus on the prolate-shape isomer

● Coupling to GQR generates splitting

    x     High peak = shifted “spherical” breathing mode

    x     Low peak = induced by coupling to GQR (K=0)

● Two-peak GMR on the prolate shape isomer
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Ab initio PGCM nicely reproduces the experimental data

• Better description of the main resonance and fragmentation

Experimental data are useful and promising to test different many-body methods

Data are not unambiguous, i.e. higher resolution would be beneficial
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INCOMPRESSIBILITY IN FINITE NUCLEI AND . . . PHYSICAL REVIEW C 89, 044316 (2014)

Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2〉E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0
at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2〉E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
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of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
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In this paper we survey existing data on GMR energies
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scopic approach in the scaling approximation and employing
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of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2〉E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0
at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2〉E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the

044316-5
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• 2-D PGCM in the (r, β2) plane

• Good agreement with experiment

• Multi-phonon states observed

• Harmonicity well confirmed
[Marevic, Regnier, Lacroix, PRC, 2023]

T w o-d imens ional ca lcu lat ions



• Good overall convergence
• Centroid relative error ~ 1,6 %
• Dispersion relative error ~ 6 %
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• Good overall convergence
• Centroid relative error ~ 1,6 %
• Dispersion relative error ~ 9,8 % Pattern present but slowly converging

28
[Epelbaum, Krebs, Meissner, EPJA, 2015]
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Schrödinger equation

(1) [Frosini, Duguet, Ebran and Somà, EPJA 58(62), 2022]

(2) [Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

PGCM reliable for low-lying collective 
spectroscopy

Dynamical correlations mostly cancel out

20Ne
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• Centroid variation ~ 10 %
• Dispersion variation ~ 20 %
• Consistent with ab initio RPA
• Entangles H and many-body truncations
• Comparison to PGCM-PT needed (S. Bofos PhD)

[Trippel, PhD Thesis, 2016]

20Ne

α =  0,08 fm4

[Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]
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• One coordinate insufficient (deformed systems)
• Two coordinates necessary: empirical knowledge r and β2
• Additional coordinates ?

[S. Bofos, ongoing]

Momentum-like coordinates (DGCM)

Systematic VS-PGCM study

MCSM-like calculations (greedy algorithm) 31
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[Matsumoto, Tanimura, Hagino, 2023]

Unbiased realisation of the PGCM subspace


