Ab initio description of monopole resonances

 in light- and medium-mass nucleiPAINT2O24 - Workshop on Progress in Ab Initio Nuclear Theory TRIUMF, Vancouver

February 27th, 2024

Andrea Porro

Technische Universität Darmstadt

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

3 Chosen results

Selected applications

- Shape coexistence
- Deformation

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

Chosen results

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

- Preliminary incompressibility results

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Selected applications

- Shape coexistence
- Deformation

Projection effects

- PAV and VAP strategies
- Rotation-vibration coupling

From finite nuclei to Astrophysics

- Preliminary incompressibility results

Outline

1 Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

Ab initio PGCM

- Formalisms
- Uncertainty quantification

Chosen results

Giant Resonances

Dual nature of nucleus

- Single-particle features
- Collective behaviour

Excitation Energy

Giant Resonances

Excitation Energy

Giant Resonances

Liquid drop picture vibrations, oscillations

Giant Resonances

Dual nature of nucleus

- Single-particle features
- Collective behaviour

Liquid drop picture vibrations, oscillations

Excítation Energy

Giant Resonances (GRs)
clearest manifestation of collective motion

Giant Resonances

Liquid drop picture vibrations, oscillations
(Rotations)

Giant Resonances (GRs)
clearest manifestation of collective motion

Giant Resonances

(Rotations)

Giant Resonances (GRs)
clearest manifestation of collective motion

Giant Resonances

Compression-mode resonances

- Incompressibility of nuclear matter K_{∞}
- Nuclear Equation of State
$\mathrm{L}=1$
- Core-collapse supernova explosion

Excitation Energy

(Rotations)

Theoretical ab initio tools

EOM and VS extensions

- IMSRG and CC
- Suited for weakly-collective excitations only

Theoretical ab initio tools

EOM and VS extensions

- IMSRG and CC
- Suited for weakly-collective excitations only

CC-LIT Lorenz integral transform (sperical)

SA-NCSMApplication to deformed systems $\left({ }^{20} \mathrm{Ne}\right)$

[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013]
[Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]

Theoretical ab initio tools

EOM and VS extensions

- IMSRG and CC
- Suited for weakly-collective excitations only

C C-LIT Lorenz integral transform (sperical)

SA-NCSM Application to deformed systems $\left({ }^{20} \mathrm{Ne}\right)$
[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013]

[Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]
(Q) RPA

- Spherical (Q)RPA, $2^{\text {nd }}$ RPA, CC-RPA, IMSRG-RPA, IMSRG-2 ${ }^{\text {nd }}$ RPA

[^0]
Theoretical ab initio tools

EOM and VS extensions

- IMSRG and CC

- Suited for weakly-collective excitations only

C C-LIT Lorenz integral transform (sperical)

SA-NCSM Application to deformed systems $\left({ }^{20} \mathrm{Ne}\right)$
[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013]

[Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]

(Q) RPA

- Spherical (Q)RPA, $2^{\text {nd }}$ RPA, CC-RPA, IMSRG-RPA, IMSRG-2 ${ }^{\text {nd }}$ RPA
- SCGF, RPA with dressed propagators
[R. Trippel, PhD Thesis, 2016]

[Barbieri, Raimondi, PRC, 2019]

Theoretical ab initio tools

EOM and VS extensions

- IMSRG and CC

- Suited for weakly-collective excitations only

C C-LIT Lorenz integral transform (sperical)

S A-N CSM Application to deformed systems ($\left.{ }^{20} \mathrm{Ne}\right)$
[Bacca, Barnea, Hagen, Orlandini, Papenbrock, PRL, 2013]

[Dytrych, Launey, Draayer, Maris, Vary et al., PRL, 2013]

(Q) RPA

- Spherical (Q)RPA, $2^{\text {nd }}$ RPA, CC-RPA, IMSRG-RPA, IMSRG-2 ${ }^{\text {nd }}$ RPA
- SCGF, RPA with dressed propagators
- (Q)RPA for axially- and triaxally-deformed systems
[R. Trippel, PhD Thesis, 2016]
[Barbieri, Raimondi, PRC, 2019]
[Beaujeault-Taudière, Frosini, Ebran, Duguet, Roth, Somà, PRC, 2023]

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

3 Chosen results

Selected applications

Shape coexistence
Deformation

Projection effects
PAV and VAP strategies
Rotation-vibration coupling

From finite nuclei to Astrophysics
Preliminary incompressibility results

Projected Generator Coordinate Method

Schrödinger equation $\quad H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Open-shell systems

Projected Generator Coordinate Method

Schrödinger equation $\quad H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$

Open-shell systems

Strong static correlations

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Symmetry-breaking reference states

Strong static correlations

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Open-shell systems

Strong static correlations
Symmetry-breaking reference states

1 Constrained HFB solutions $|\Phi(q)\rangle$

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Open-shell systems

Strong static correlations
Symmetry-breaking reference states

1 Constrained HFB solutions

$|\Phi(q)\rangle$
Generator coordinates
(q can be any coordinate)

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Open-shell systems

Strong static correlations
Symmetry-breaking reference states

1 Constrained HFB solutions

$|\Phi(q)\rangle$
2 PGCMI ansatz

$$
\left|\Psi_{n}\right\rangle=\int \mathrm{d} q f_{n}(q)|\Phi(q)\rangle
$$

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Open-shell systems

Strong static correlations
Symmetry-breaking reference states

1 Constrained HFB solutions

$|\Phi(q)\rangle$
2 PGCMI ansatz

$$
\left|\Psi_{n}\right\rangle=\int \mathrm{d} q \underbrace{f_{n}(q)}_{n} \Phi(q)\rangle
$$

Linear coefficients

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Open-shell systems

Strong static correlations
Symmetry-breaking reference states

1 Constrained HFB solutions

$|\Phi(q)\rangle$
Generator coordinates
(q can be any coordinate)

$$
\left|\Psi_{n}\right\rangle=\int \mathrm{d} q \underbrace{f_{n}(q)}_{n}|\Phi(q)\rangle
$$

Linear coefficients

3 HWWG Equation

Variational method

$$
\delta \frac{\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}=0
$$

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Open-shell systems

Strong static correlations

1 Constrained HFB solutions

$|\Phi(q)\rangle$
Generator coordinates
2 PGCM ansatz

$$
\left|\Psi_{n}\right\rangle=\int \mathrm{d} q \underbrace{f_{n}(q)}_{n}|\Phi(q)\rangle
$$

Linear coefficients

Symmetry-breaking reference states

3 HWVG Equation

$$
\begin{array}{lcc}
\text { Variational method } & \text { Schrödinger-like equation } & \text { Kernels evaluation } \\
\delta \frac{\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}=0 & \int\left[\mathcal{H}(p, q)-E_{n} \mathcal{N}(p, q)\right] f_{n}(q) \mathrm{d} q=0 & \mathcal{H}(p, q) \equiv\langle\Phi(p)| H|\Phi(q)\rangle \\
& & \mathcal{N}(p, q) \equiv\langle\Phi(p) \mid \Phi(q)\rangle
\end{array}
$$

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Diagonalization in a physically-informed

1 Constrained HFB solutions

$|\Phi(q)\rangle$
Generator coordinates

2 PGCMI ansatz
$\left|\Psi_{n}\right\rangle=\int \mathrm{d} q\left(f_{n}(q) \quad \Phi(q)\right\rangle$

Linear coefficients
(q can be any coordinate)

3 HWW Equation

Variational method Schrödinger-like equation

$$
\delta \frac{\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}=0
$$

$$
\int\left[\mathcal{H}(p, q)-E_{n} \mathcal{N}(p, q)\right] f_{n}(q) \mathrm{d} q=0
$$

Kernels evaluation
$\mathcal{H}(p, q) \equiv\langle\Phi(p)| H|\Phi(q)\rangle$ $\mathcal{N}(p, q) \equiv\langle\Phi(p) \mid \Phi(q)\rangle$

Projected Generator Coordinate Method

Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Diagonalization in a physically-informed
reduced Hilbert space

1 Constrained HFB solutions

$|\Phi(q)\rangle$
Generator coordinates

2 PGCM Ansatz
$\left|\Psi_{n}\right\rangle=\int \mathrm{d} q\left(f_{n}(q) \quad \Phi(q)\right\rangle$

Linear coefficients
(q can be any coordinate)

3 HWWG Equation

Variational method

$$
\delta \frac{\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}=0
$$

+ Projection

Schrödinger-like equation

$$
\int\left[\mathcal{H}(p, q)-E_{n} \mathcal{N}(p, q)\right] f_{n}(q) \mathrm{d} q=0
$$

Kernels evaluation
$\mathcal{H}(p, q) \equiv\langle\Phi(p)| H|\Phi(q)\rangle$ $\mathcal{N}(p, q) \equiv\langle\Phi(p) \mid \Phi(q)\rangle$

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle \mid \delta\left(E_{v}-E_{0}-\omega\right)
$$

ω [MeV]

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

Related moments $\quad m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

Related moments $\quad m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

Quantify the most relevant features of the strength $\quad \bar{E}_{1}=\frac{m_{1}}{m_{0}} \quad \sigma^{2}=\frac{m_{2}}{m_{0}}-\left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0$

$$
\sigma^{2}=\frac{m_{2}}{m_{0}}-\left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0
$$

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

Related moments $\quad m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

Quantify the most relevant features of the strength

$$
\bar{E}_{1}=\frac{m_{1}}{m_{0}} \quad \sigma^{2}=\frac{m_{2}}{m_{0}}-\left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0
$$

Ab-initio PGCM and QRPA consistent numerical settings (systematic study in ${ }^{46} \mathrm{Ti}$)

- Quantities expanded on harmonic oscillator basis (characterised by $\hbar \omega, \mathrm{e}_{\max }, \mathrm{e}_{3 \max }$)

Setting

Studied quantity: monopole strength

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

Related moments $\quad m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

Quantify the most relevant features of the strength

$$
\bar{E}_{1}=\frac{m_{1}}{m_{0}}
$$

$$
\sigma^{2}=\frac{m_{2}}{m_{0}}-\left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0
$$

Ab-initio PGCM and QRPA consistent numerical settings (systematic study in ${ }^{46}$ Ti)

- Quantities expanded on harmonic oscillator basis (characterised by $\hbar \omega, e_{\max }, e_{3 \max }$)
- Family of chiral NN + in-medium 3N interactions (NLO, N2LO and N3LO)
- T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-plus three-nucleon interactions for accurate nuclear structure studies", Phys. Lett. B, 808, 2020
- In-vacuum SRG evolution ($\alpha=0.04 \mathrm{fm}^{4}, \alpha=0.08 \mathrm{fm}^{4}$)
- M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, "In-medium k-body reduction of n-body operators", The European Physical Journal A, 57(4), 2021

Uncertainty budget

Many-body truncation

- Comparison to PGCM-PT
- Only tested for low-lying exc
- Correlated to SRG and generator coords

Chiral Order

SRG dependence

- Strong centroid dependence ~ 10%
- Dispersion relative error ~20 \%
- Truncates both H and many-body

6
 Generator coordinates choice

- Empirical knowledge, two coords \mathbf{r} and $\boldsymbol{\beta}_{2}$
- More systematic choice needed

Harmonic OscilLator width

- Good overall convergence
- Centroid relative error ~ 1,6 \%
- Dispersion relative error ~6\%

Finite Basis Size

- Good overall convergence
- Centroid relative error ~ 0,6 \%
- Dispersion relative error ~ 1,7 \%
- $\mathbf{e}_{3_{\text {max }}}$ not studied (14 safe for GS)

Three-body treatment

- NO2B approximation

1-2 \% uncertainty in low-lying exc

- Not tested for giant resonances

Hamiltonian parameters

- LEC dependence of X forces
- Few interactions compared
- Correlated to SRG
- Need for emulators (EC)

Finite Basis Size

- Good overall convergence

Finite Basis Size

- Good overall convergence
- Centroid relative error ~0,6 \%

Finite Basis Size

- Good overall convergence
- Centroid relative error ~ 0,6 \%
- Dispersion relative error ~ 1,7 \%

Finite Basis Size

- Good overall convergence
- Centroid relative error ~0,6 \%
- Dispersion relative error ~ 1,7\%
- $e_{3 \text { max }}$ not studied (14 safe for GS)

[Myiagi et al., PRC, 2022]

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

Chosen results
Selected applications
Ab initio PGCM

- Formalisms
- Uncertainty quantification

Projection effects
PAV and VAP strategies
Rotation-vibration coupling

From finite nuclei to Astrophysics

Shape coexistence effects in ${ }^{28}$ Si
\square
Total Energy Surface $\mathrm{E}_{\text {нгв }}\left(\beta_{2}, \mathrm{r}\right)$

Shape coexistence effects in ${ }^{28}$ Si

Shape coexistence effects in ${ }^{28}$ Si

- Oblate GS and prolate-shape isomer

Shape coexistence effects in ${ }^{28}$ Si

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM

Shape coexistence effects in ${ }^{28}$ Si

Shape coexistence [Jenkins et al., 2012]

Deformation

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM

Shape coexistence effects in ${ }^{28}$ Si

Shape coexistence [Jenkins et al., 2012]

Deformation

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
> Shape coexistence but weak mixing

Shape coexistence effects in ${ }^{28}$ Si

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
> Shape coexistence but weak mixing

Shape coexistence effects in ${ }^{28}$ Si

Shape coexistence [Jenkins et al., 2012]

Deformation

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
> Shape coexistence but weak mixing
Nuclei with stronger signature? ${ }^{12}$

Shape coexistence effects in ${ }^{28}$ Si

Shape coexistence [Jenkins et al., 2012]

Deformation

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
> Shape coexistence but weak mixing
Nuclei with stronger signature? ${ }^{12}$

Shape coexistence effects in ${ }^{28}$ Si

Shape coexistence [Jenkins et al., 2012]

Deformation

Radial vibration
on oblate GS

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
> Shape coexistence but weak mixing

Shape coexistence effects in ${ }^{28}$ Si

Shape coexistence [Jenkins et al., 2012]

Deformation

Radial vibration on oblate GS

- Oblate GS and prolate-shape isomer
- Proper study of shape coexistence in PGCM
> Shape coexistence but weak mixing

Deformation effects in prolate ${ }^{28}$ Si

\square
Total Energy Surface $\mathrm{E}_{\text {нFB }}\left(\beta_{2}, r\right)$

Deformation effects in prolate ${ }^{28}$ Si

K=O Quadrupole Strength

- Focus on the prolate-shape isomer
- Coupling to GQR generates splitting
x High peak = shifted "spherical" breathing mode x Low peak = induced by coupling to GQR (K=0)
- Two-peak GMR on the prolate shape isomer

Deformation effects in prolate ${ }^{28}$ Si

- Focus on the prolate-shape isomer
- Coupling to GQR generates splitting
x High peak = shifted "spherical" breathing mode x Low peak = induced by coupling to GQR (K=0)
- Two-peak GMR on the prolate shape isomer

Deformation effects in prolate ${ }^{28}$ Si

- Focus on the prolate-shape isomer
- Coupling to GQR generates splitting
$x \quad$ High peak $=$ shifted "spherical" breathing mode x Low peak = induced by coupling to GQR (K=0)
- Two-peak GMR on the prolate shape isomer

Deformation effects in prolate ${ }^{28}$ Si

Comparison to experimental data

Comparison to experimental data

Comparison to experimental data

Ab initio PGCM nicely reproduces the experimental data

- Better description of the main resonance and fragmentation

Experimental data are useful and promising to test different many-body methods
Data are not unambiguous, i.e. higher resolution would be beneficial

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

Ab initio PGCM

- Formalisms
- Uncertainty quantification

Selected applications
Shape coexistence
Deformation

Projection effects
PAV and VAP strategies

- Rotation-vibration coupling

3 Chosen results

Projection in GCM and QRPA

DIFFERENT FLAVOURS OF SYMMETRY BREAKING AND RESTORATION (Q)RPA

Symmetry breaking G C M

Symmetry conserving

Projection in GCM and QRPA

Symmetry conserving

Projection in GCM and QRPA

(1) [Erler, PhD Thesis, TUD, 2012]

symmetry conserving

Projection in GCM and QRPA

(1) [Erler, PhD Thesis, TUD, 2012]
(2) [Federschmidt and Ring, NucPhysA, 1985]

symmetry conserving

Projection in GCM and QRPA

DIFFERENT FLAVOURS OF SYMMETRY BREAKING AND RESTORATION
(Q) R P A

GMR results

PROJECTION AFTER DIAGONALIZATION PAV RPA (1)

PROJECTION BEFORE DIAGONALIZATION P(Q)RPA (2)
(1) [Erler, PhD Thesis, TUD, 2012]
(2) [Federschmidt and Ring, NucPhysA, 1985]

G C M

Large amplitudes superposition
of def. HF(B) states

PROJECTION AFTER DIAGONALIZATION PAV GCM
GMR results

PGCM

Projection in GCM and QRPA

DIFFERENT FLAVOURS OF SYMMETRY BREAKING AND RESTORATION
(Q) R P A

(1) [Erler, PhD Thesis, TUD, 2012]
(2) [Federschmidt and Ring, NucPhysA, 1985]
hew implementation
PROJECTION BEFORE DIAGONALIZATION
P(Q)RPA (2)

PROJECTION AFTER DIAGONALIZATION

PAV RPA (1)

$$
P(Q) R P A
$$

Large amplitudes superposition of def. HF(B) states GMR results

PROJECTION AFTER DIAGONALIZATION
GMR Nosults hew implementation
GMR results
G C M

Symmetry breaking

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions	$\|G S\rangle_{\text {def }}$	$\|\omega\rangle_{\text {def }}$
PGCM : symmetry-conserving solutions	$\|G S\rangle_{\text {sym }}$	$\|\omega\rangle_{\text {sym }}$

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions	$\|G S\rangle_{\text {def }}$	$\|\omega\rangle_{\text {def }}$
PGCM : symmetry-conserving solutions	$\|G S\rangle_{\text {sym }}$	$\|\omega\rangle_{\text {sym }}$

Projection effects

- Not too dissimilar
- Increased fragmentation (e.g. ${ }^{24} \mathrm{Mg}$)
- More quantitative agreement

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$ PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$

Projection effects

- Not too dissimilar
- Increased fragmentation (e.g. ${ }^{24} \mathrm{Mg}$)
- More quantitative agreement

Can we treat projection a posteriori?

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$ PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$

PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Projection effects in ${ }^{28}$ Si

$\begin{array}{lll}\text { GCM : symmetry-breaking solutions } & |G S\rangle_{\text {def }} & |\omega\rangle_{\text {def }} \\ \text { PGCM : symmetry-conserving solutions } & |G S\rangle_{\text {sym }} & |\omega\rangle_{\text {sym }}\end{array}$
PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state

$$
|\mathrm{ROT}\rangle=\hat{R}(\Omega)|\mathrm{GS}\rangle_{\mathrm{def}}
$$

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$ PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$

PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state

$$
|\mathrm{ROT}\rangle=\hat{R}(\Omega)|\mathrm{GS}\rangle_{\mathrm{def}}
$$

Non-vanishing Coupling

$$
a_{\omega}=\langle\operatorname{ROT} \mid \omega\rangle_{\mathrm{def}}
$$

$$
\langle\mathrm{ROT} \mid \omega\rangle_{\mathrm{sym}}=0
$$

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$ PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$

PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state

$$
|\mathrm{ROT}\rangle=\hat{R}(\Omega)|\mathrm{GS}\rangle_{\mathrm{def}}
$$

Non-vanishing Coupling $\quad a_{\omega}=\langle\mathrm{ROT} \mid \omega\rangle_{\text {def }} \quad\langle\mathrm{ROT} \mid \omega\rangle_{\text {sym }}=0$

$$
|\omega\rangle_{\mathrm{def}}=N_{\text {rot }}|\mathrm{ROT}\rangle+N_{\mathrm{vib}}|\mathrm{VIB}\rangle
$$

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$ PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$

PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state

$$
|\mathrm{ROT}\rangle=\hat{R}(\Omega)|\mathrm{GS}\rangle_{\mathrm{def}}
$$

Non-vanishing Coupling $\quad a_{\omega}=\langle\text { ROT } \mid \omega\rangle_{\text {def }} \quad\langle\text { ROT } \mid \omega\rangle_{\text {sym }}=0$

$$
|\omega\rangle_{\mathrm{def}}=N_{\mathrm{rot}}|\mathrm{ROT}\rangle+N_{\mathrm{vib}}|\mathrm{VIB}\rangle
$$

Can be subtracted!

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$
PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$
PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state

$$
|\mathrm{ROT}\rangle=\hat{R}(\Omega)|\mathrm{GS}\rangle_{\operatorname{def}}
$$

Non-vanishing Coupling $\quad a_{\omega}=\langle\text { ROT } \mid \omega\rangle_{\text {def }} \quad\langle\text { ROT } \mid \omega\rangle_{\text {sym }}=0$

$$
|\omega\rangle_{\mathrm{def}}=N_{\text {rot }}|\mathrm{ROT}\rangle+N_{\mathrm{vib}}|\mathrm{VIB}\rangle
$$

Can be subtracted!

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$
PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$
PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state

$$
|\mathrm{ROT}\rangle=\hat{R}(\Omega)|\mathrm{GS}\rangle_{\mathrm{def}}
$$

Non-vanishing Coupling $\quad a_{\omega}=\langle\text { ROT } \mid \omega\rangle_{\text {def }} \quad\langle\text { ROT } \mid \omega\rangle_{\text {sym }}=0$
Observed both in GCM and RPA ${ }^{(1)}$

- Does not depend on the many-body method
- Consequence of deformed ground state

Projection effects in ${ }^{28}$ Si

GCM : symmetry-breaking solutions $\quad|G S\rangle_{\text {def }} \quad|\omega\rangle_{\text {def }}$
PGCM : symmetry-conserving solutions $\quad|G S\rangle_{\text {sym }} \quad|\omega\rangle_{\text {sym }}$
PAV GCM: projection of symmetry-breaking solution

- Anomalous spectrum
- Zero-frequency rotations (Goldstone modes)
- Born-Oppenheimer-like approximation

Rotational state

$$
|\mathrm{ROT}\rangle=\hat{R}(\Omega)|\mathrm{GS}\rangle_{\operatorname{def}}
$$

Non-vanishing Coupling $\quad a_{\omega}=\langle\mathrm{ROT} \mid \omega\rangle_{\text {def }} \quad\langle\mathrm{ROT} \mid \omega\rangle_{\mathrm{sym}}=0$

Observed both in GCM and RPA ${ }^{(1)}$

- Does not depend on the many-body method
- Consequence of deformed ground state
(1) INFN collaboration, G. Colò and D. Gambacurta

$$
|\omega\rangle_{\mathrm{def}}=N_{\mathrm{rot}}|\mathrm{ROT}\rangle+N_{\mathrm{vib}}|\mathrm{VIB}\rangle
$$

Rotations must be treated variationally

- PGCM already does
- Projected QRPA needed

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

Chosen results
Selected applications
Ab initio PGCM

- Formalisms
- Uncertainty quantification
- Shape coexistence
- Deformation

Projection effects
PAV and VAP strategies
Rotation-vibration coupling

From finite nuclei to Astrophysics

- Preliminary incompressibility results

From finite nuclei to Astrophysics

Symmetry energy

- IV GDR
- Dipole polarizability
- Neutron skin

From finite nuclei to Astrophysics

Symmetry energy

- IV GDR
- Dipole polarizability
- Neutron skin

Nuclear compressibility

- GMR

$$
\begin{aligned}
K_{\mathrm{A}} & =\left(M / \hbar^{2}\right)\left\langle r^{2}\right\rangle E_{\mathrm{GMR}}^{2} \\
\tilde{E}_{k} & =\sqrt{\frac{m_{\mathrm{k}}}{m_{k-2}}} \quad \bar{E}_{1}=\frac{m_{1}}{m_{0}}
\end{aligned}
$$

From finite nuclei to Astrophysics

Symmetry energy

- IV GDR
- Dipole polarizability
- Neutron skin

Preliminary evaluation of K_{∞}

- Starting from deformed systems
- Extrapolation in agreement with commonly accepted values
- Systematic investigation in heavier systems (Sn, Mo isotopic chains, neutron rich)

Outline

Giant Resonances

- Physical introduction
- Existing ab initio theoretical tools

2 Ab initio PGCM

- Formalisms
- Uncertainty quantification

3 Chosen results

Selected applications
Shape coexistence

- Deformation

Projection effects
PAV and VAP strategies
Rotation-vibration coupling

From finite nuclei to Astrophysics
Preliminary incompressibility results

Conclusions and perspectives

Current frontiers

S PECTROSCOPY

ACCURACY

- Single-particle
- Collective excitations

OPEN-SHELL

[Hergert, Front. Phys, 2020]

Conclusions and perspectives

SPECTROSCOPY

OPEN-SHELL

UNCERTAINTIES

- N E R TAl Nowle

Conclusions and perspectives

SPECTROSCOPY

OPEN-SHELL

UNCERTAINTIES

Take-away messages
○ PGCM reliable tool for ab initio* spectroscopyAccess to new observables and phenomena in ab initio
O Different levels of symmetry breaking and restoration reveal new physical insights

Conclusions and perspectives

Perspectives
SPECTROSCOPY
Systematic comparison to new and existing exp data
Deeper uncertainty quantification (EC)
OPEN-SHELL

UNCERTAINTIES

Take-away messages
○ PGCM reliable tool for ab initio* spectroscopyAccess to new observables and phenomena in ab initioDifferent levels of symmetry breaking and restoration reveal new physical insights

Conclusions and perspectives

Perspectives
Different levels of symmetry breaking and restoration reveal new physical insights

Conclusions and perspectives

Perspectives
Different levels of symmetry breaking and restoration reveal new physical insights

Thanks for the attention

Technische Universität Darmstadt
Alexander Tichai
Robert Roth
Achim Schwenk

INFN

Thomas Duguet
Vittorio Somà
Mikael Frosini
Benjamin Bally
Jean-Paul Ebran
Alberto Scalesi

Backup slides

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist! Multi-phonon states

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist! Multi-phonon states
- Not accessible to QRPA

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist! Multi-phonon states
- Not accessible to QRPA

One-dimensional PGCM calculation

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist! Multi-phonon states
- Not accessible to QRPA

One-dimensional PGCM calculation

- PGCM predicts high-lying states

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist! Multi-phonon states
- Not accessible to QRPA

One-dimensional PGCM calculation

- PGCM predicts high-lying states
- Close to the harmonic oscillator eigen-solutions

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist! Multi-phonon states
- Not accessible to QRPA

One-dimensional PGCM calculation

- PGCM predicts high-lying states
- Close to the harmonic oscillator eigen-solutions
- Transitions maximised between neighbouring phonons

Multi-phonon states in ${ }^{46}$ Ti

- GRs can be interpreted as the first phonon of a collective excitation
- Higher phonons also exist! Multi-phonon states
- Not accessible to QRPA

One-dimensional PGCM calculation

- PGCM predicts high-lying states
- Close to the harmonic oscillator eigen-solutions
- Transitions maximised between neighbouring phonons
x Linear trend in the transition strength

Two-dimensional calculations

- 2-D PGCM in the $\left(r, \beta_{2}\right)$ plane

Two-dimensional calculations

- 2-D PGCM in the (r, β_{2}) plane
- Good agreement with experiment

Two-dimensional calculations

- 2-D PGCM in the (r, β_{2}) plane
- Good agreement with experiment
- Multi-phonon states observed

Two-dimensional calculations

Intrinsic PGCM collective wave-function

- 2-D PGCM in the (r, β_{2}) plane
- Good agreement with experiment
- Multi-phonon states observed
- Harmonicity well confirmed

Two-dimensional calculations

Intrinsic PGCM collective wave-function

- 2-D PGCM in the (r, β_{2}) plane
- Good agreement with experiment
- Multi-phonon states observed
- Harmonicity well confirmed

Two-dimensional calculations

Intrinsic PGCM collective wave-function

- 2-D PGCM in the (r, β_{2}) plane
- Good agreement with experiment
- Multi-phonon states observed
- Harmonicity well confirmed

Two-dimensional calculations

Intrinsic PGCM collective wave-function

- 2-D PGCM in the (r, β_{2}) plane
- Good agreement with experiment
- Multi-phonon states observed
- Harmonicity well confirmed

Harmonic Oscillator width

- Good overall convergence
- Centroid relative error ~ 1,6\%
- Dispersion relative error ~ 6%

Chiral Order

- Good overall convergence
- Centroid relative error ~ 1,6 \%
- Dispersion relative error ~ 9,8 \% ~

Pattern present but slowly converging

Many-body truncation

$$
\text { Schrödinger equation } \quad H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

Many-body truncation

Many-body truncation

Schrödinger equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

Many-body truncation

Schrödinger equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

PGCM : multi-reference unperturbed state

Many-body truncation

Schrödinger equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

PGCM : multi-reference unperturbed state
PGCM-PT : ab initio expansion method(1)
A-body Hillbert space
Wave operator action (e.g. PT)

Many-body truncation

Schrödinger equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

PGCM : multi-reference unperturbed state
PGCM-PT : ab initio expansion method ${ }^{(1)}$ PGCM-PT(2) up to $2^{\text {nd }}$ order so far ${ }^{(2)}$

Many-body truncation

Schrödinger equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

PGCM : multi-reference unperturbed state
PGCM-PT : ab initio expansion method ${ }^{(1)}$ PGCM-PT(2) up to $2^{\text {nd }}$ order so far ${ }^{(2)}$

Many-body truncation

Schrödinger equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

PGCM : multi-reference unperturbed state A-body Hilbert space

PGCM-PT : ab initio expansion method ${ }^{(1)}$ PGCM-PT(2) up to $2^{\text {nd }}$ order so far(2) $\left.H_{A}\left|\Psi_{k}^{\mathrm{A}}\right\rangle=\Omega \Theta_{k}^{(0)}\right\rangle=\left|\Theta_{k}^{(0)}\right\rangle+\left|\Theta_{k}^{(1)}\right\rangle+\left|\Theta_{k}^{(2)}\right\rangle+\mathrm{X}$

(1) [Frosini, Duguet, Ebran and Somà, EPJA 58(62), 2022]
(2) [Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

Many-body truncation

Schrödinger equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

Dynamical correlations mostly cancel out PGCM reliable for low-lying collective
A-body Hilbert space

SRG dependence

A-body Hilbert space

SRG dependence

A-body Hilleert space

SRG dependence
A-body Hilbert space

SRG dependence

A-body Hilbert space

SRG dependence

A-body Hillbert space

- Centroid variation ~ 10 \%

$$
\alpha=0.04 \mathrm{fm}^{4} \quad \alpha=0.08 \mathrm{fm}^{4}
$$

SRG dependence

A-body Hilbert space

$$
\sim
$$

- Centroid variation ~ 10%
- Dispersion variation ~ 20 \%

PGCM subspace

$$
\sim
$$

SRG dependence

A-body Hilbert space

- Centroid variation ~ 10%
- Dispersion variation ~ 20 \%
- Consistent with ab initio RPA
[Trippel, PhD Thesis, 2016]
PGCM subspace

SRG dependence

A-body Hilbert space

- Centroid variation ~ 10%
- Dispersion variation ~ 20 \%
- Consistent with ab initio RPA
[Trippel, PhD Thesis, 2016]
- Entangles H and many-body truncations

SRG dependence

A-body Hilbert space

Generator coordinates choice

A-body Hilbert space

Generator coordinates choice

A-body Hilbert space

Generator coordinates choice

A-body Hillbert space

Generator coordinates choice

A-body Hillbert space

- Two coordinates necessary: empirical knowledge \mathbf{r} and $\boldsymbol{\beta}_{2}$
- Additional coordinates ?

Generator coordinates choice

A-body Hillbert space

PGCM alone suited for $a b$ initio?

Generator coordinates choice

A-body Hilbert space

- Two coordinates necessary: empirical knowledge \mathbf{r} and $\boldsymbol{\beta}_{2}$
- Additional coordinates ?

[S. Bofos, ongoing] Systematic VS-PGCM study
PGCM alone suited for ab initio?
Many possible directions

HFB vacua selection

HFB vacua selection

HFB vacua selection

Must exhaust the PGCM subspace

HFB vacua selection

Mesh refinement

HFB vacua selection

HFB vacua selection

HFB vacua selection

- Qualitative convergence \sim
- Centroid relative error ~0,2 \%
- Dispersion relative error ~1,6\% V

HFB vacua selection

- Good overall convergence

HFB vacua selection

- Good overall convergence
- Centroid relative error ~ 0,3 \%

HFB vacua selection

- Good overall convergence
- Centroid relative error ~0,3 \%
- Dispersion relative error $\sim 0,3 \% ~ V$

HFB vacua selection

SYSTEMATIC CRITERION NEEOEO

Unbiased realisation of the PGCM subspace

[^0]: [R. Trippel, PhD Thesis, 2016]

