QVAE w/ Pegasus

Dec 1st

- QVAE
 - Architectures
 - CNN
 - FCN
 - Energy incidence
 - Condition on encoder and decoder
 - Condition on encoder
 - Unconditionalized
 - Modulated energy => Can lead to learning how to modulate more features, position of voxels, angles, etc.
 - Results/metrics
 - Energy histogram
 - Sparsity histogram
 - Conditionalized energy and sparsity histogram (NOT GOOD)
- RBM
 - Topology
 - Chimera-like
 - Pegasus
 - Metrics
 - Energy distribution for encoded and RBM Gibbs samples
 - Zais and Zrais estimates for partition function => log-likelihood of model
 - Dwave
 - Sehmi's method
 - Fast stein. Not robust but could be helpful?
 - Hao's method
- Theory. Work in progress

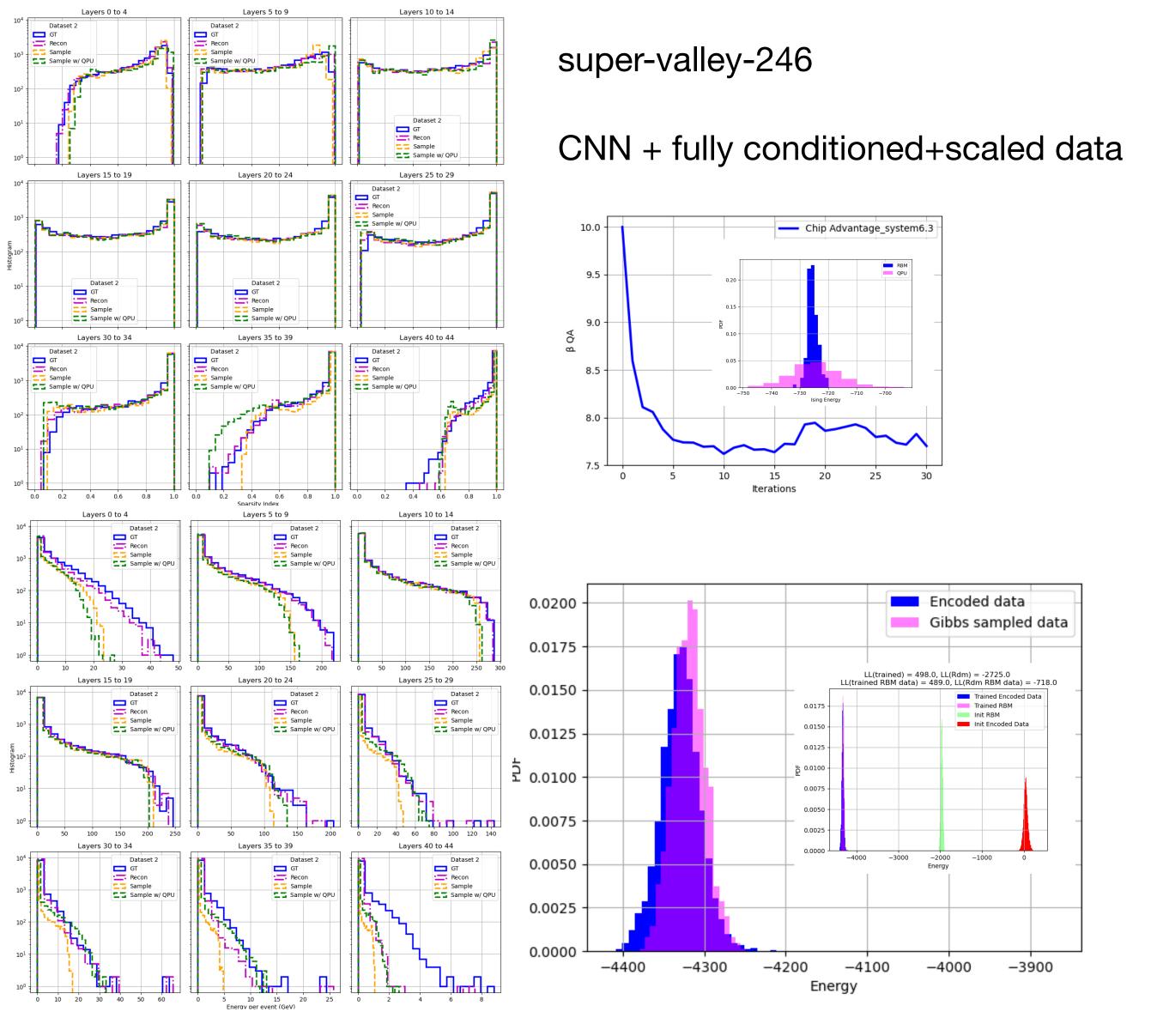
- recon, good samples, robust RBM).
- and the decoder.
- conclusive.

• In the previous slides (Nov 18th), model super-valley-246 seem to check every aspect decently well (RBM energy overlap between encoded data and Gibb samples, good

• Here we tried conditioning the energy by *positional embedding*. Basically, instead of concatenating the "incident energy", we simply add it to the torch tensor in the encoder

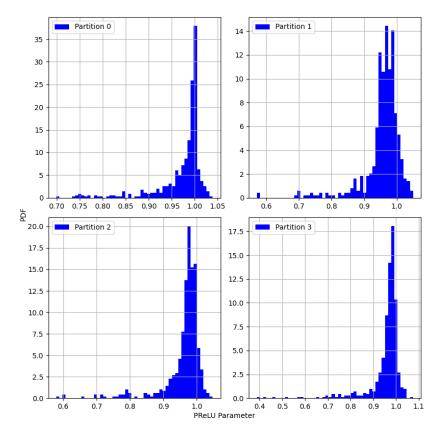
• We also tried the *positional encoding* of the voxels by adapting the positional encoding done in transformers for LLM. In LLM we have 1D vectors, but in our case, we have a cylinder, so we applied positional encoding a la Attention is all you need in (r,\phi,z).

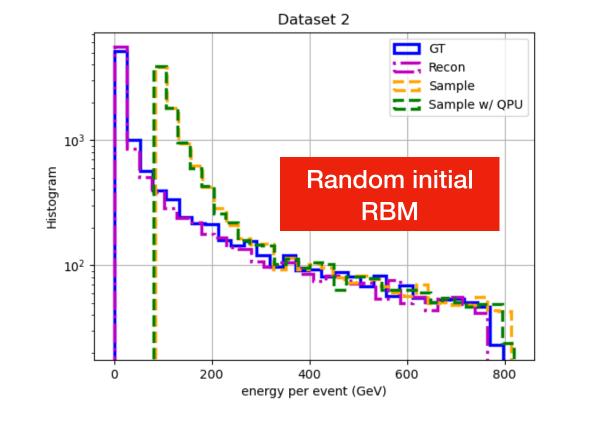
• For the latter model, there were some instabilities during training. So the results are not

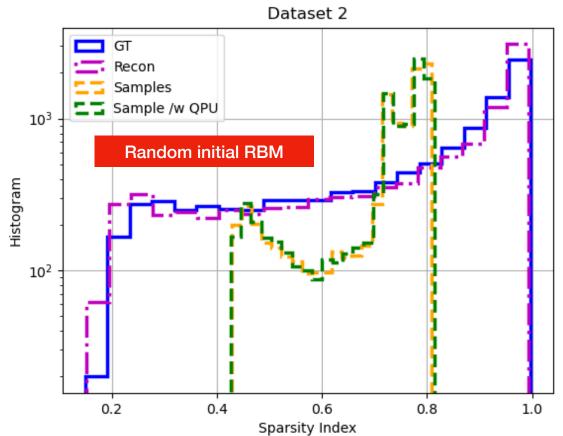


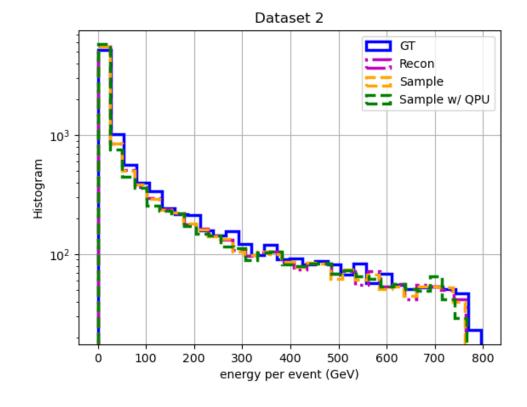
LL(Trained) = Trained model Log-likelihood evaluated on the encoded validation dataset. LL(Trained RBM data) = Trained model Log-likelihood evaluated on Gibbs sampled data. LL(Rdm) = Random RBM model Log-likelihood evaluated on the encoded validation dataset. LL(Rdm RBM data) = Random RBM model Log-likelihood evaluated on on Gibbs sampled data.

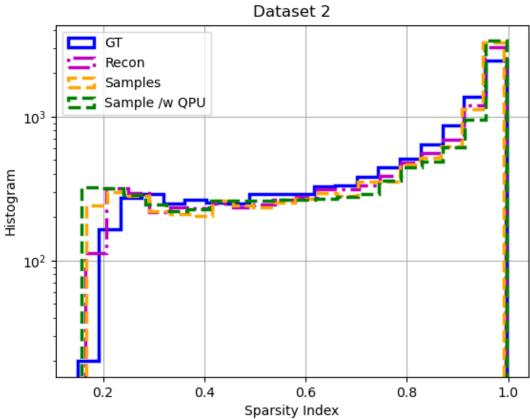
We expect LL(trained) ~ LL(trained RBM data) > LL(Rdm RBM data) > LL(Rdm)

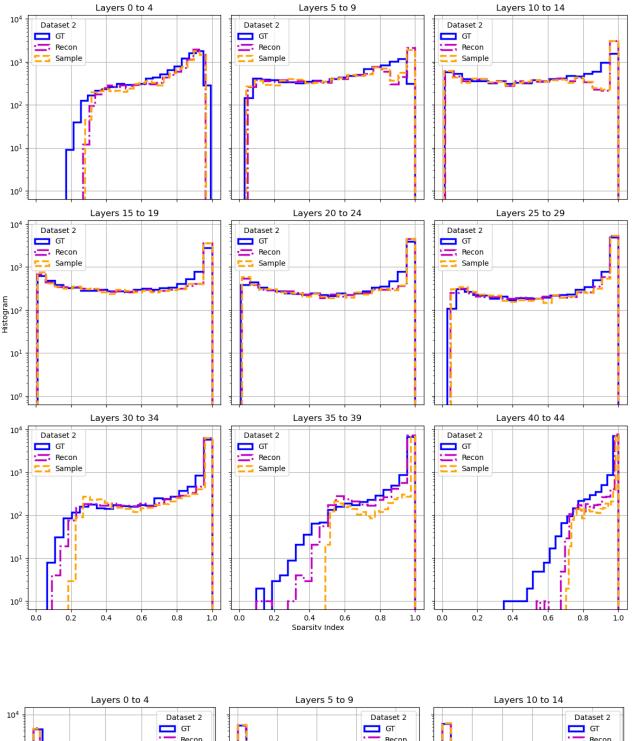


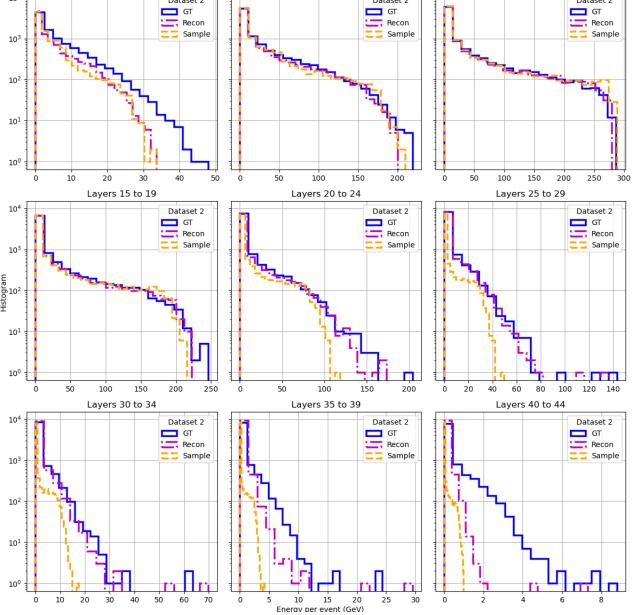






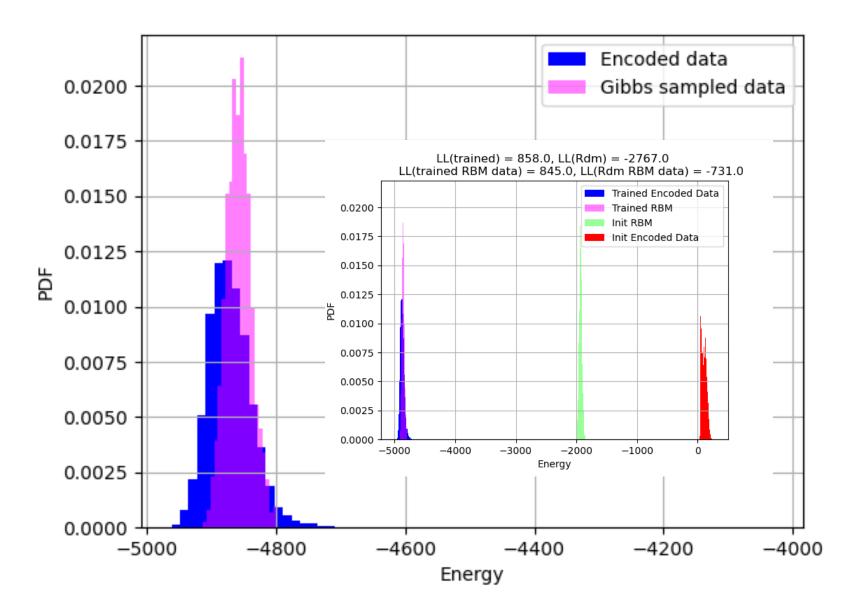


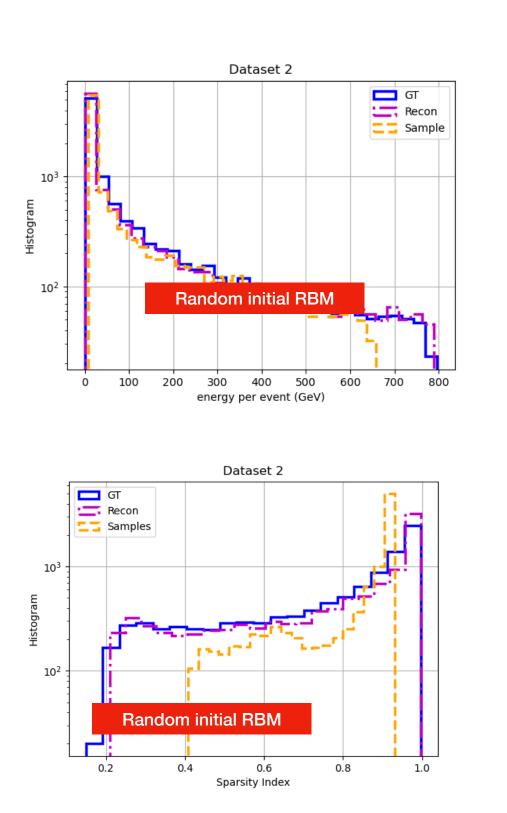


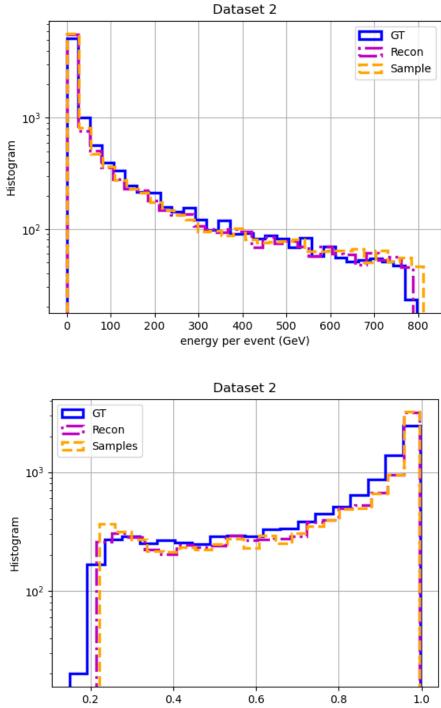


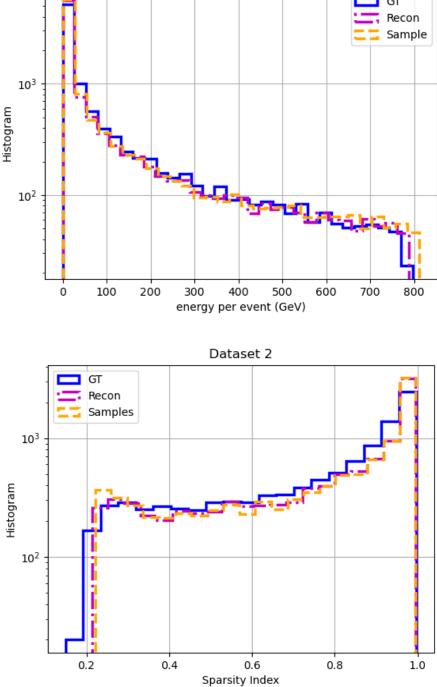
confusedsponge-256

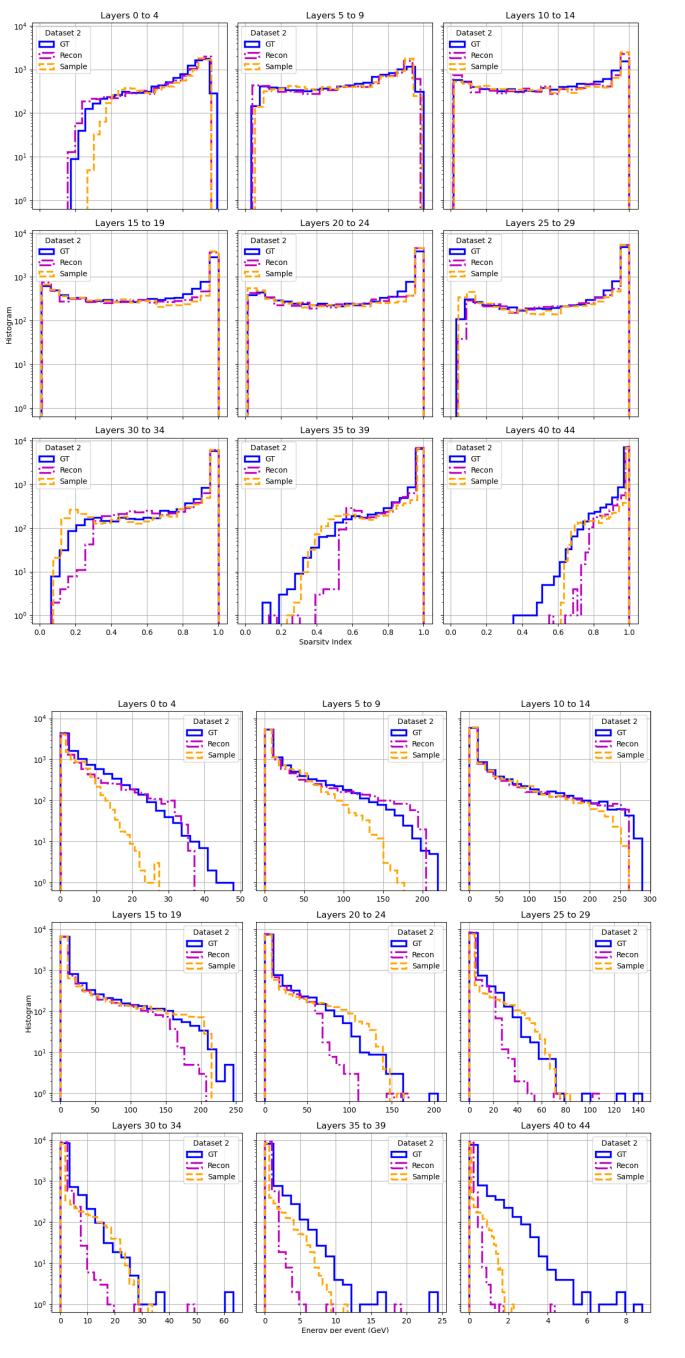
CNN+posEnc cond VAE+scaled data





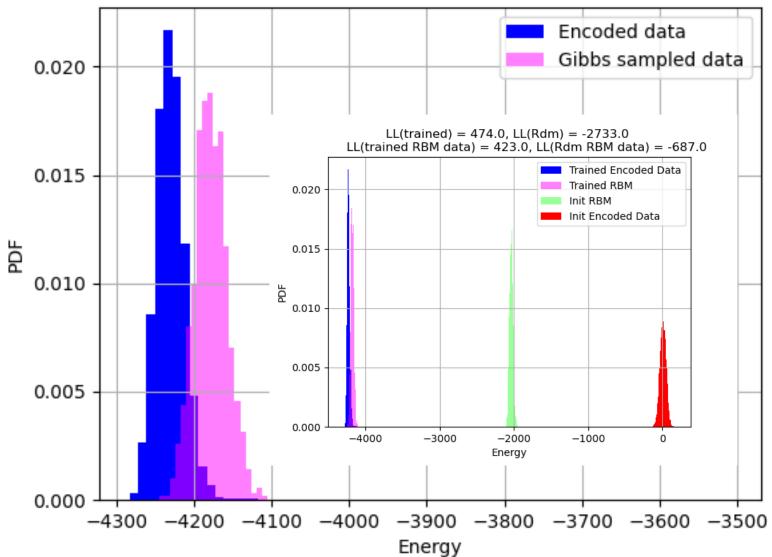




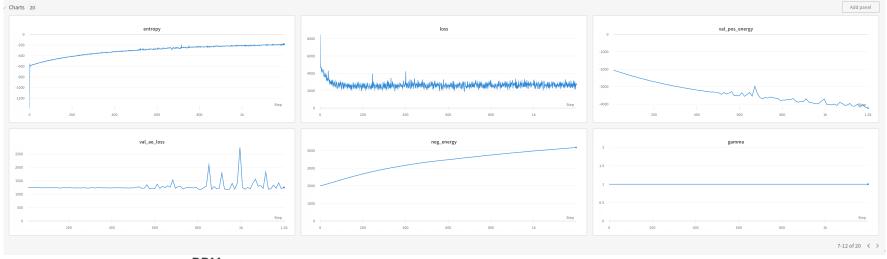


zany-cloud-260

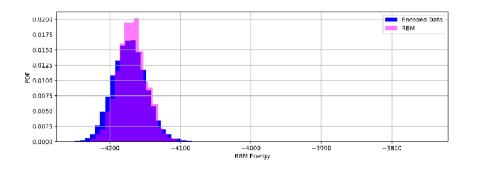
CNN+ cond VAE+posEnc on voxels+scaled data

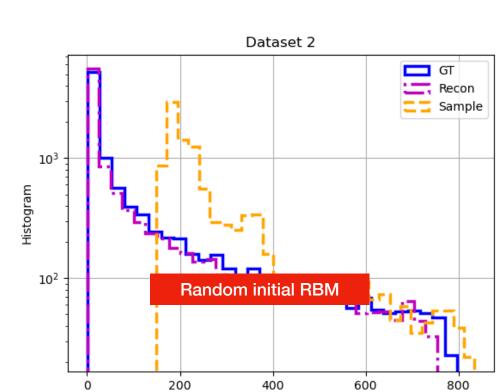


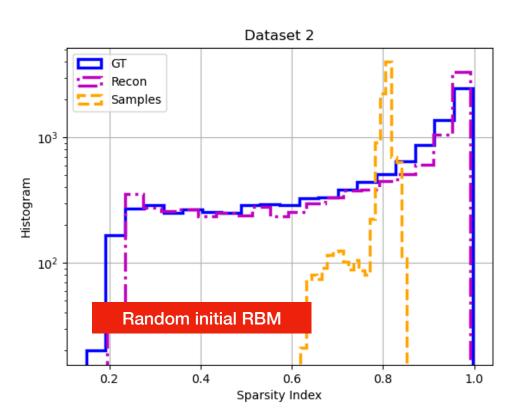
Somewhat unstable model

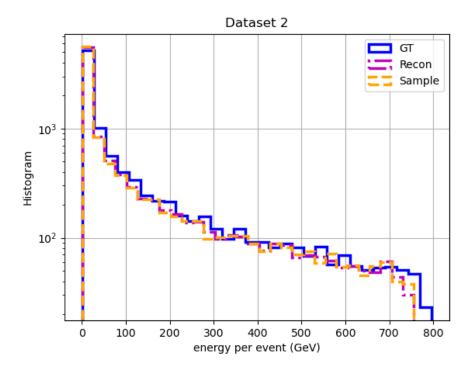


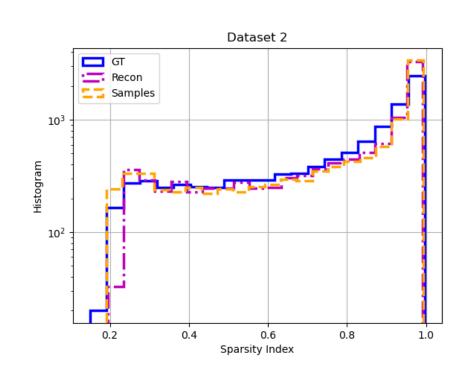
RBM energy

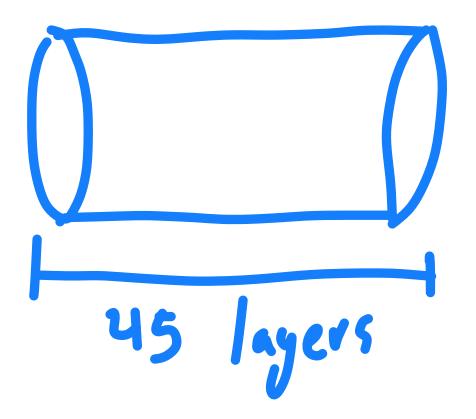


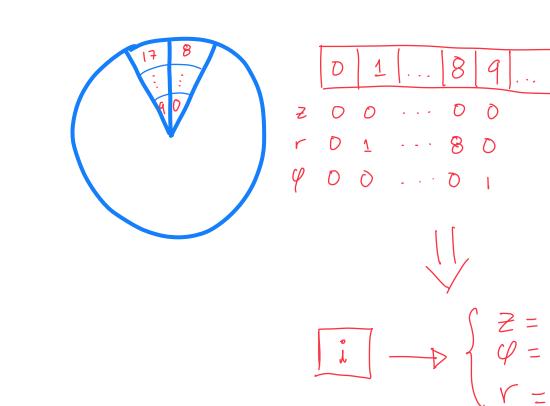




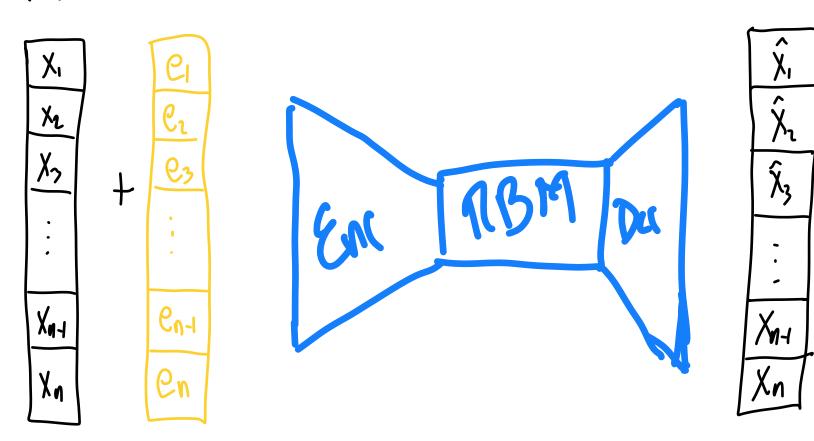








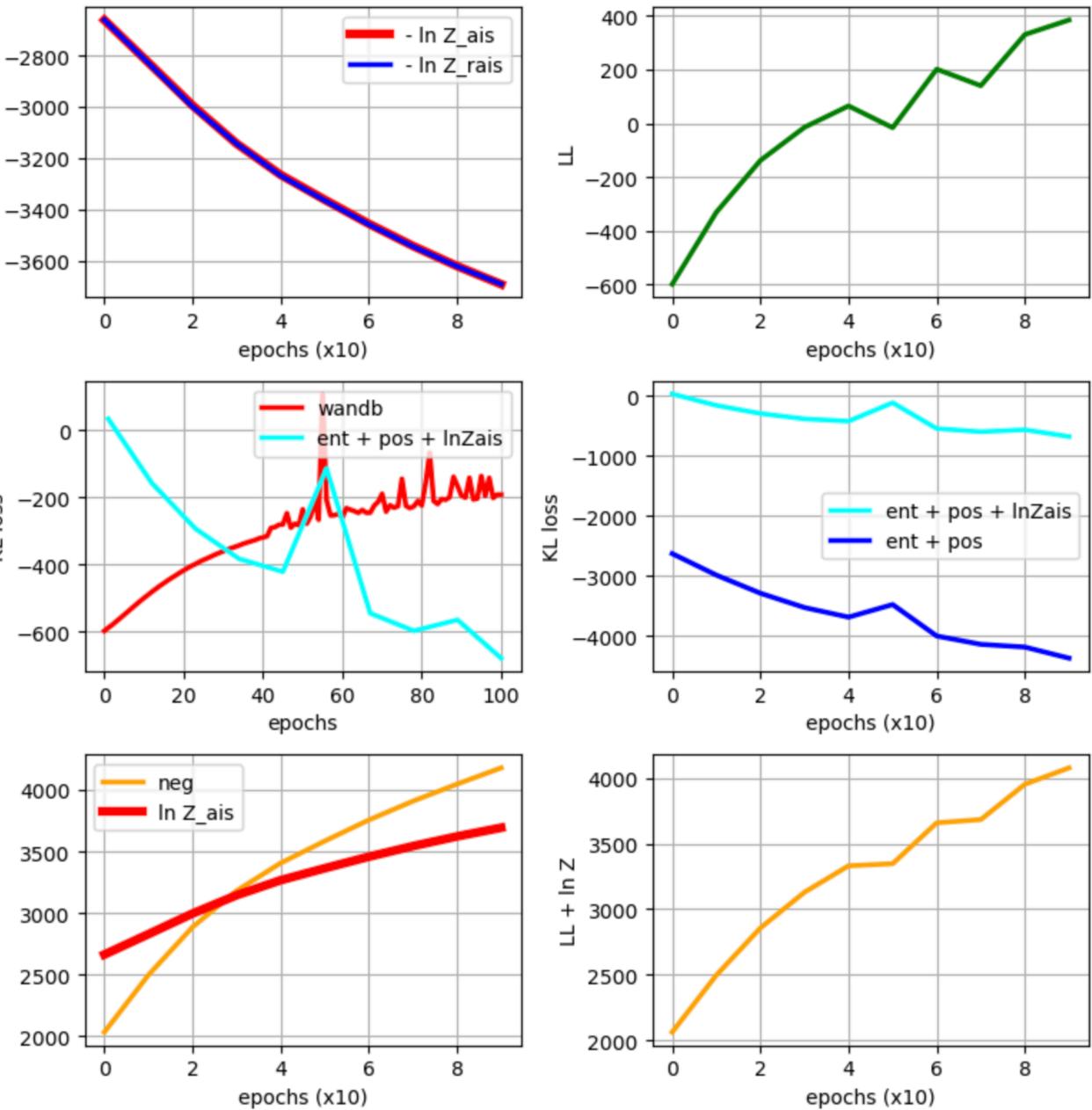
Positional encoding



How to obtain
$$e_{u}$$
?
 $PE(u, i) = \int Sine K_{i}u \quad if \quad i \text{ is even}$
 $COS K_{i}u \quad if \quad i \text{ is odd}$
 $K_{i} = 10^{-4i/A}$
 V
 $\lambda_{i} \in [2\pi, 2\pi \cdot 10^{4})$
 $e_{u} = \sum_{i} PE(u, i)$

W~K wc[Wmin,Wmnx] ~Debye

zany-cloud-260 CNN+ cond VAE+posEnc on voxels+scaled data $\{z_i\}_{i=1}^{N}: \text{ validation dataset} \\ L: p(\{z_i\}) = \prod_{i=1}^{N} p(z_i) = \frac{1}{Z_i} \prod_{i=1}^{N} e^{-E(z_i)}$ Z: partition function $Z_{i}: partition function$ $LL = \langle ln p[\{z_{i}\}\rangle \rangle = \frac{1}{N} \left[-\sum_{i=1}^{N} E[z_{i}] - NMZ_{i}\right]$ $= -\langle E[z] \rangle_{z_i} - m Z_i$



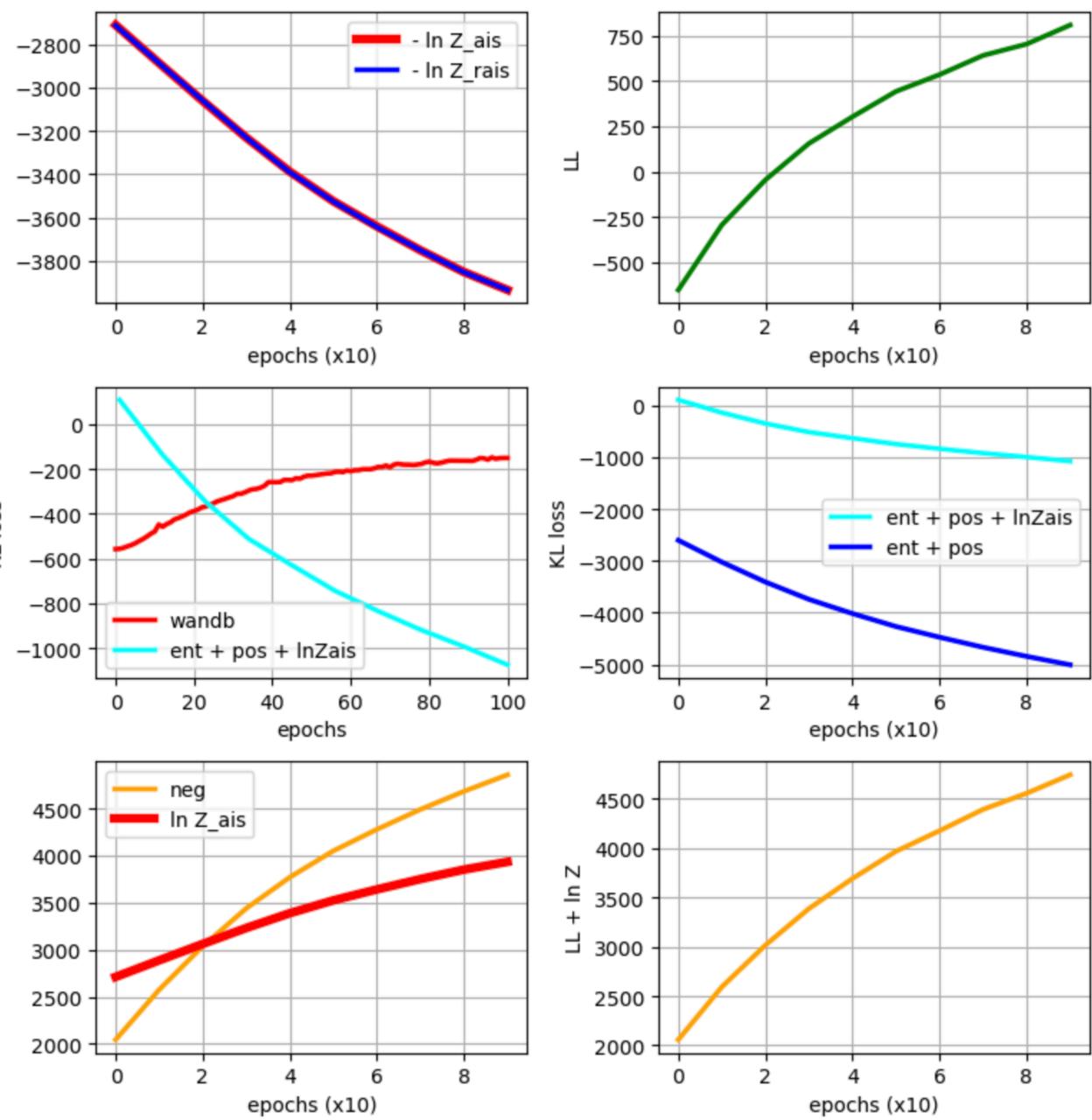
KL loss

	_	_	_	
_			٦	I
			1	l
				l
				l
				l
				l
				l
				l
-	-	-	4	l
				l
				l
				l
				l
				l
				l
				l
			1	l
				l
				l
				l
				l
				l
				l
-			1	l
				l
				l
				l
				l
				l
				l
-	-	-	1	l
				l
				l
			J	I
			1	I
			1	I
			J	I
-	-	-	4	I
				I
-	-	-		l

confusedsponge-256

CNN+posEnc cond VAE+scaled data

 $\{z_{i}\}_{i=1}^{N}: \text{ validation dataset} \\ L: \varphi(\{z_{i}\}) = \prod_{i=1}^{N} \varphi(z_{i}) = \frac{1}{Z_{1}} \prod_{i=1}^{N} e^{-E(z_{i})} \\ \overline{Z}_{1}: \text{ partition function} \\ LL = \langle \ln \varphi(\{z_{i}\}) \rangle = \frac{1}{N} \left[-\sum_{i=1}^{N} E(z_{i}) - NMZ_{i} \right]$ $= -\langle E[z] \rangle_{z_i} - m Z_i$



	1
/	

Things to do

- Make code lighter
- More work needed on the Positional Encoding
- I suggest increasing annealing rates.
- Save loss function data
- Save backup model after each epoch.
- What defines our best model during training?