QVAE w/ Pegasus

Dec 8th

- QVAE
 - Architectures
 - CNN
 - FCN
 - Energy incidence
 - Condition on encoder and decoder
 - Condition on encoder
 - Unconditionalized
 - Modulated energy => Can lead to learning how to modulate more features, position of voxels, angles, etc.
 - Results/metrics
 - Energy histogram
 - Sparsity histogram
 - Conditionalized energy and sparsity histogram (NOT GOOD)
- RBM
 - Topology
 - Chimera-like
 - Pegasus
 - Metrics
 - Energy distribution for encoded and RBM Gibbs samples
 - Zais and Zrais estimates for partition function => log-likelihood of model
 - Dwave
 - Sehmi's method
 - Fast stein. Not robust but could be helpful?
 - Hao's method
- Theory. Work in progress

Things to do

- Make code lighter. (Progress has been made)
- More work needed on the Positional Encoding (Testing different approaches)
- I suggest increasing annealing rates. (**Done**)
- Save loss function data. (Wandb does this already but the data is weird*)
- Save backup model after each epoch. (Pending)
- What defines our best model during training? (Loss AHEP = AE + Hits + Ent + Pos)

zany-cloud-260 CNN+ cond VAE+posEnc on voxels+scaled data $\{z_i\}_{i=1}^{N}: \text{ validation dataset} \\ L: p(\{z_i\}) = \prod_{i=1}^{N} p(z_i) = \frac{1}{Z_i} \prod_{i=1}^{N} e^{-E(z_i)}$ Z: partition function Z: partition function $LL = \langle \ln p[\{z_i\}\} \rangle = \frac{1}{N} \left[-\sum_{i=1}^{N} E[z_i] - NMZ_i \right]$ $= -\langle E[z] \rangle_{z_i} - m Z_i$

KL loss

	I
•	l
	l
	l
	l
	l
-	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
_	l
	l
	l
	۱
	I
-	I
	I

2k

happy-sun-270 winter-glade-268 103 10³ Events Events fi 10° dataset type dataset type 10¹ 10¹ — input — input — recon - recon — samples — samples 10° <u>| .</u> 0.0 100 0.4 0.6 Sparsity 0.4 0.6 0.8 Sparsity 0.8 0.0 0.2 0.2 1.0 1.0 Step <

happy-sun-270

winter-glade-268

Step (

winter-glade-268

2471 0

val_totalEnergyHist

2471 0

val_totalEnergyHistScatter

misty-wind-267 <u>5</u> 600 bi 500 -9 400 -300 -200 200 400 600 Input Observed Energy (GeV)

2471 🗘

RBM energy

misty-wind-267

drawn-cosmos-266

drawn-cosmos-266

drawn-cosmos-266

drawn-cosmos-266

> > 1.0

0.8 -0.6 -0.4 -0.2 -0.0 -

unted:
$$E \propto N$$
 $\sigma_E \approx \sqrt{N} \approx \sqrt{E}$
 $E \oplus c$ $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$

Suppose we plot: In Rel (é, E) vs In t X: Ground truth ; E: Event energy X: Reconstruction ; É: Reconstruded Event energy $\hat{\chi} = \int_{AE}^{P} (X)$ Possible scenarios $\hat{\mathcal{E}} = \sum_{i \in Vorkels} \hat{X}_i$ /y=X $\mathcal{E} = \sum_{i \in VOXds} X_i$ Relative Error $|\varepsilon - \hat{\varepsilon}| = \theta \varepsilon$ $RU(\hat{\varepsilon},\varepsilon) = \frac{|\varepsilon-\hat{\varepsilon}|}{\varepsilon}$ $Low = Im \frac{1}{\epsilon}$ High y=sqrt(x) Relative Recon Error 10-1 10-5 100 Energy Every 10-3 10-8 High Energy 10-5 10-6 10-7 Low Energy · For High Energy, the error goes as wE o_0 · For Low Energy, the error goes as ~ E

Training QVAE on QAs protocol