QVAE w/ Pegasus
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and Sp as the entropy of QA and B, respectively, and as-
sume Sga = Sp, from which after some straightforward
algebra:

Z(Bga)
(H)ga |, In =235

L2z
(H)piy (H)B(s)

We can further simplify the previous expression by intro-
ducing the variable A = Bga — B:

B = Bqa (E30)

(H)ga | In{e”?"")p(s)
(H)p(p) (H) B(p)

Notice that the r.h.s. of Eq. (E31) has a fixed point
at B = Boa. Here on we will only keep the first term
in the r.h.s. and we will show that the fixed point is
stable. In addition, same as we did when deriving the
previous method, we replace H(z) — H(z)/B. Since
we do not have any control over Sg4 nor we know the
value a priori, we replace the prefactor in the first term
of the r.h.s. with 3 since it does not affect the fixed point
value and we further introduce a stability parameter §(>
0). After the previous considerations, we propose the
following mapping:

B = Bqa + (E31)

(E32)

(H)gam )5
(H)B(1)

The function fs has a fixed point at B = [Bga. The
stability condition close to the fixed point correspond to
|f5(Boa)l < 1. The first derivative at the fixed point
yields:

Bey1 = f5(B) = Be (

2
G A _
11+ _C;_(H>g(1) , 0=1

1+l 6#1.

| f5(Bqa)l = (E33)

In Fig. 3 we have plotted Eq. (E33) vs S for different
values of §. The values of B chosen for this plot corre-
spond to where we typically find the fixed point. We call
0 a stability parameter since we can tune it to stabilize
the mapping per iteration.
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From the previous it is easy to notice that the fixed
point is unstable when the learning rate, 1, such that

N> Boa/oha (Boa/oba ~2-1077).

Appendix F: Data Pre-processing

Prior to training the model, the GEANT4-simulated
events where transformed and re-scaled so as to improve
the model’s capability to learn useful representations for
the data. In turn, during inference, we applied the in-
verse transformation and re-scaling to bring the gener-
ated events back to the original data space.

For a particular data set, the transformation was ap-
plied on a per-voxel (i.e. column) basis and utilized the
per-voxel statistics for all events in the data set.

Consider a data set where each row is a GEANT4
shower-simulated event, the first column of the event
represents the first voxel of the first layer, and the last
column represents the last voxel of the last layer. We

will now outline the steps taken to pre-process a given
GEANT4 simulation data set.

1. For each column, only consider those events where
the given voxel energy is non-zero. Normalize the
column by the mean and standard deviation of
those non-zero events only, while also leaving zero-
energy voxels unchanged.

2. Again, excluding zero-energy voxels and leaving
them unchanged, find the minimum of the normal-
ized column. Subtract the minimum from and add
a small number ¢ = 10~2 to all non-zero energy
voxels in the column.

3. Store the column-wise mean, standard deviation,
and minimum as these will be needed when apply-
ing the inverse transformation to the output of the
model.
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 PRX paper highlights

Architectures
e CNN
e FCN

e 4-partite RBM

Energy incidence

e Condition on encoder and decoder via concat or positional encoding

Results/metrics
 Energy histogram
e Sparsity histogram
 Mean energy per rtheta,z
* Energy distribution for encoded and RBM Gibbs samples
e Zais and Zrais estimates for partition function => log-likelihood of model
 Dwave QPU for sampling and validation
« Method to estimate temperature
 Sehmi’s method

« Hao’s method/ adaptive method



