
Temperature Estimation During Training (Problems)

- When is the beta well trained?
- How to make the standard independent from?
 - Learning Rate
 - Number of Nodes (Mean Energy, energy scale)
- How to train the beta effectively (safely)?
- How to prevent reaching D-WAVE limit during training/beta training?

Loss Limit (threshold)

energy_loss = abs(mean_dwave_energy - mean_rbm_energy)

 $Lim = rac{2\sigma(E_{DWave})\sigma(E_{RBM})}{\sqrt{N}(\sigma(E_{DWave})+\sigma(E_{RBM}))}$

If energy_loss < loss_limit: break</pre>

- Independent with number of nodes
- Independent with the size of mean energy.

Beta Limit (in case scaling up the w&b to exceed limit)

- Min beta = 2 during the beta training
- Won't need to care about higher beta

Result of beta_training with pre-set threshold

n of nodes per layer = 128, AdvSys 4.1 Energy Distribution beta = 4.4720.06 RBM DWAVE 0.05 0.04 0.03 0.02 0.01 0.00 -500 -480 -470 -510-490 -460-450-440

Energy Distribution beta = 4.928RBM 0.025 DWAVE 0.020 0.015 0.010 0.005

-2040

-2020

-2000

-1980

-1960

0.000

-2100

-2080

-2060

n_of_nodes_per layer = 512 AdvSys 4.1

beta = max(beta - lr * (mean_dwave_energy - mean_rbm_energy), 2.0), lr=0.1

<pre>beta, error_list, rbm_energies, dwave_energies = beta_training(model, beta_init = 100.0)</pre>					
The number of epoch is: 1 The beta is: 2.0 The energy loss is: 1856.0181958675385					
The number of epoch is: 2 The beta is: 30.483887505531314 The energy loss is: 284.8388750553131					
The number of epoch is: 3 The beta is: 2.0 The energy loss is: 1417.5135419368744					
The number of epoch is: 4 The beta is: 30.023780083656312 The energy loss is: 280.2378008365631					
The number of epoch is: 5 The beta is: 2.0 The energy loss is: 1418.334464788437					
The number of epoch is: 6 The beta is: 30.452881646156314 The energy loss is: 284.5288164615631					
The number of epoch is: 7 The beta is: 2.0 The energy loss is: 1433.2275922298431					
The number of epoch is: 8 The beta is: 30.230835747718814 The energy loss is: 282.3083574771881					

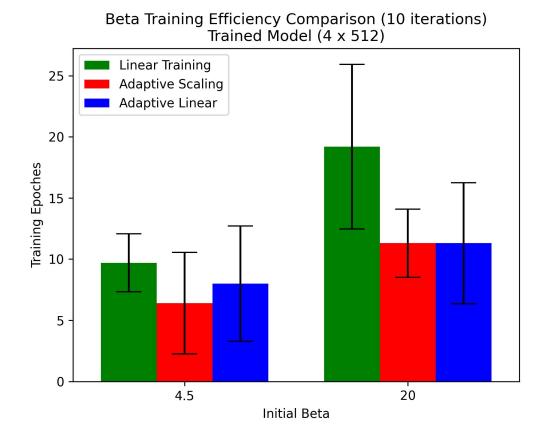
beta = max(beta * (mean_dwave_energy / mean_rbm_energy)**power, 2.0) power = 4

The error_limit is: 4.883040771484375					
The number of epoch	is: 1	The beta is:	2.0 The energy	loss is: 1842.6183339357376	
The number of epoch	is: 2	The beta is:	3.3803340567305784	The energy loss is: 285.8223398923874	
The number of epoch	is: 3	The beta is:	4.732109431334821	The energy loss is: 178.8621348142624	
The number of epoch	is: 4	The beta is:	5.07920413696327	The energy loss is: 36.39631450176239	
The number of epoch	is: 5	The beta is:	5.149997790701203	The energy loss is: 7.06672465801239	
The number of epoch	is: 6	The beta is:	5.065853906822259	The energy loss is: 8.37858784198761	
The number of epoch	is: 7	The beta is:	5.117269493574827	The energy loss is: 5.15315043926239	
The number of epoch	is: 8	The beta is:	5.211023693651247	The energy loss is: 9.27400004863739	
The number of epoch	is: 9	The beta is:	5.070120653940952	The energy loss is: 13.92277729511261	
The number of epoch	is: 10	The beta is	: 5.132352068205577	The energy loss is: 6.22700297832489	
The number of epoch	is: 11	The beta is	: 5.135008568138234	The energy loss is: 0.26374614238739014	
The trained beta is: 5.135008568138234					
The number of epoch of the beta training is: 11					

Method 2

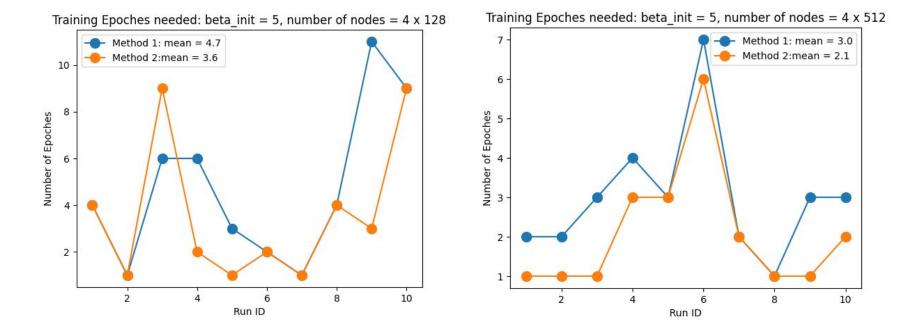
Method 1

Adaptive Training

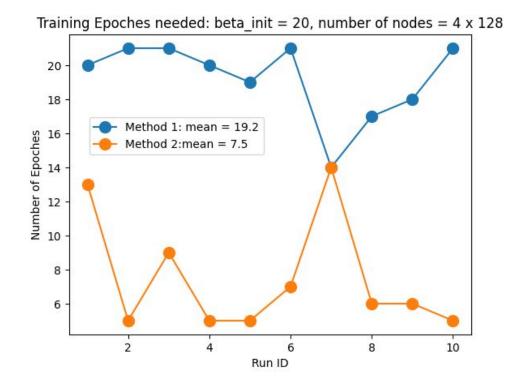

• Adaptive scale training: Power of training is dynamic.

```
training order = max(1, np.floor( - 2 * mean dwave energy/np.var(dwave energies)))
```

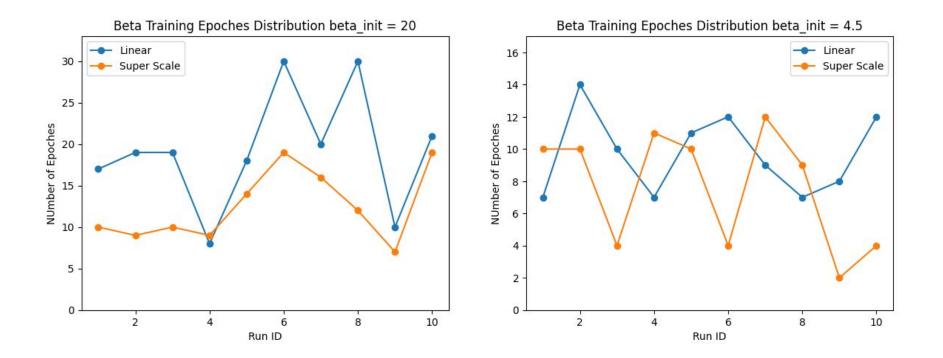
• Adaptive linear training: Ir is dynamic


lr = 2 * beta/np.var(dwave_energies)

AdvSys 6.3:



Archive


Lr = 0.01 vs Training power = 4, Error Limit Ratio = 0.01

Lr = 0.01 vs Training power = 4, Error Limit Ratio = 0.01

Trained Model: 4 x 512 nodes, Ir = 0.01, power = adaptive

