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Models

• Drawn-cosmos — Conditionalized via concatenated energy


• Winter-glade — Conditionalized via simple energy addition to voxel array


• Misty-wind — Conditionalized via concatenated energy + voxel positional 
encoding v2


• Happy-sun — Conditionalized via concatenated energy + voxel positional 
encoding v1


• Prime-totem — Conditionalized via concatenated energy (150 epochs)



Happy-sun Drawn-cosmos

Misty-wind Winter-glade

Prime-totem

•Partition function via annealed 
importance sampling  and 
reversed annealed importance 
sampling vs epochs. We 
expect both corves to 
converge. 

•Log-likelihood vs epochs. We 
expect the curve to saturate 
for a fully-trained RBM.
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•PDFs of RBM energy of 
encoded validation data and 
Gibbs sampled data. We 
expected overlap between the 
two PDFs
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Samples are generated using a 
non-trained RBM
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Samples are generated using a 
non-trained RBM

Highlights: 
•The decoder is robust enough to cope with the 

samples of a non-trained RBM. 
•Specifically for energy histogram, little does it 

matter if the RBM is trained. 
•This can be understood as follows: In all of 

these models, the encoder and decoder are 
conditionalized with the incidence energy. The 
RBM is never conditionalized. Yet, the energy 
incidence must be embedded in latent space. 
Hence, when we sample from the RBM, the 
sample should correspond to a specific 
incidence energy (which we don’t control). 
When this generated sample goes through the 
decoder, we do impose an incidence energy 
condition. Therefore, the decoder learns to 
enforce the condition over the a priori sampled 
energy. 

•For future work, we need to conditionalize the 
RBM and, therefore, the QPU as well. But it’s 
not clear whether the latter is feasible.



In prior meetings we discussed a possible 
way to conditionalize the RBM by reverse 
annealing, i.e., 
• Initialize the QPU with a specific quantum 

state of \sigma_z and annealing time 
variable s=1 

•Reverse the annealing to s<0.4.  
•Anneal back to s=1 

However, in order for this to work, i.e., to not 
destroy the qubits which encode the 
incidence energy label, we need to make 
sure that the term in the dwave Hamiltonian 
which contain the \sigma_x^j are such that 
the coefficients corresponding to the qubits 
\sigma_z^j that encoded the incidence 
energy are zero.  

In this approach, I think, the annealing 
process will be such that qubit which 
contain the energy incidence encoding in 
the \sigma_z basis, will not get projected 
onto the \sigma_x basis and, hence, ought 
to not get destroyed. 

We need to figure out if and how to specify 
these coefficients
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Train model for 25 epochs using 
free dwave trial
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• PRX paper highlights


• Architectures


• CNN


• FCN


• 4-partite RBM


• Energy incidence


• Condition on encoder and decoder via concat or positional encoding


• Results/metrics


• Energy histogram


• Sparsity histogram


• Mean energy per r,theta,z


• Energy distribution for encoded and RBM Gibbs samples


• Zais and Zrais estimates for partition function => log-likelihood of model


• Dwave QPU for sampling and validation


• Method to estimate temperature


• Sehmi’s method


• Hao’s method/ adaptive method
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