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A new era of astronomy!

First measurement of a binary black hole
merger in 2015 by LIGO

LIGO/Virgo have detected 11+19 mergers

Many new experiments planned

Huge opportunity for (particle) astrophysics
and cosmological research!
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Gravitational wave timeline

Poincaré, Sur la dynamique

Proposed in 1905 by Poincaré e l'electron, 1905
Predicted in 1916 by Einstein

ndirect evidence in 1974 from the Hulse-
Taylor binary pulsar (1993 Nobel Prize)

Direct evidence (2015 onwards)

— Interferometer proposals: 1960s

— First detection in 2015 (announced in 2016) by the
LIGO collaboration (2017 Nobel Prize)



Ground-based

@ | interferometers

LIGO, Virgo,

| KAGRA (now)

Pulsar timing
| Arrays
EPTA, IPTA, SKA
(now)

Current/future experiments

Space-based
interferometers
LISA, Tianqin,
Decigo, BBO
(ca. 2035+)

Atom
interferometry
AION, MAGIS
(ca. 2025)



These lectures

A (brief) note on General Relativity
Gravitational wave theory

Binary Mergers

Detection

Science opportunities and prospects



A (brief) note on

GENERAL RELATIVITY



Scalars, vectors, and tensors

* | will assume you are familiar with index

notation: A Scalar

A u Vector

A,u,u Tensor (rank 2)

* Our indices will (generally) run over space and
time variables: (1, v = {t, X, 1, z}



Einstein notation

* | will also use the following notation:
— Covariant vector: Ap

— Contravariant vector: A*

* Greek indices (u,») run over spacetime,
Latin indices (z,) run over space

* Repeated indices are summed over,

', = E ',
i



“Spacetime tells matter how to move;
matter tells spacetime how to curve”

John A. Wheeler



The Einstein Field Equations




The Einstein Field Equations

Einstein tensor

Ricci scalar
G‘L B ! }‘% & e
pr = by — 50 Gpy = A Y
Ricci tensor T Energy-momentum
tensor

Metric



The Einstein Field Equations

Einstein tensor

Ricci scalar
‘l' v Sl
_ 1 L
Gu = Ry — 3R g = A L
Ricci tensor T Energy-momentum
tensor
Metric

W_/ \/_/

Curvature Matter



The metric tensor

e Symmetric real rank-2 tensor Juv = Guyu

git Gtz Gty Gtz
9zt Yzxx gfL‘y 9xz

guy N gyt gy:L‘ gyy gyz
gzt gzx gzy gz-
* Measures distance: Zg,w datdx”

r
: Q: How many independent components |

| does g, have (maximally)? '



The metric tensor

e Symmetric real rank-2 tensor Juv = Guyu

git Gtz Gty Gtz
9zt Yzxx g:L‘y 9xz
gyt gy:z: gyy gyz
gzt gzx gzy gz-

Juv =

 Measures distance: ds® = Zgwda?“dx”
p,v

F==="



Example: 2 spatial dimensions

w,v={z,y}

e Distance measured as:

e Zgwd:ﬁ“dx’/

TN”
= Gued®® + gy dy® + 2g.,dxdy

Pythagoras
theorem

* Flatspace: ds* = dz* + dy?

So, in flat space, g;; = 1, g;; =0 for i # j
* Flat space-time has g,,~n,,~+diag(-1,1,1,1)



The Ricci tensor R, and scalar R

* Describe the geometry of space-time

* Derived from the Riemann tensor, R¥,

Ricci tensor: contract the first and the third index
Ricci scalar: contract the Ricci tensor (with g/)

* Flat spacetime: R, = 0 =R
— But, remember the EFE:

1
Ry — 509 = — 1w

— Flat spacetime is empty!



Matter €= curvature

* |n reality, space-time is almost flat almost
everywhere. Gravity is wealk,

87TGN
4

=21x1078s?kg ' m™!
C

* For example, consider the sun:

mass density of the sun =1.4gcm ™2 x ¢

energy density of the sun =1.3 x 10*° kgm ™' s

G, =2.6 x 107 m~?

~ (radius of curvature)



Matter €= curvature

* Inrealitv_snace-time.is almast flat almost.
ILearn more: Repeat this exercise for

i different astrophysical systems
i (for example the Earth) |

L8 N B B N N 4 B N § N § § N § § §B N N N § N N N N B N .

* For example, consider the 5~

mass density of the sun =1, _ et
energy density of the sun =1.3 X 1020 kgm S
G, =2.6 x 107** m™?

~ (radius of curvature)



An introduction to

GRAVITATIONAL WAVES



What is a gravitational wave?

* A solution to a wave equation:

s caueon
M 1) = | 3oy — g | AT ) =0

* Or, with a source:

h(Z,t) = [source]

e We will see that the EFE take this form in
linearized theory



Linearized GR

* As we saw, the (Minkowski) metric of flat space-
time is given by n,,=+diag(1,-1,-1,-1)

* Imagine that
Guv = Ny + My, where h,, < g,
l.e., a flat metric with a small perturbation

* Now we fill this into the EFE and perform some
dark magiC (Convenient gauge changes)



EFE for a metric perturbation®

Source: energy
momentum tensor

.Q How many independent
.components does h , have?

* This is actually an equation for the
trace-reversed metric perturbation,
but for our purposes the difference

is not important



EFE for a metric perturbation®

Source: energy
momentum tensor

trace-reversed metric perturbation,
but for our purposes the difference
is not important

|
|
: * This is actually an equation for the
|
|



Transverse-Traceless gauge

* QOutside of the source, hlw — (O

— This gives 4 more conditions
— hw has 6-4=2 independent components

* This is exploited in the Transverse-Traceless

gauge, h, o =20 only spatial components
hjj =0 traceless
h;, -j =0 no divergence



GW polarization

 Example: wave traveling down the z-axis

e = (e Yeosle - 2/0)

o 7Z-axis into/out of the slide:




167wGG
4

SOlVing h,uy — T,uu

C

* Recall that generally, linear wave equations can
be solved using Green’s functions:

Gz — ') =6z — )

e Just as in electrodynamics, we need the retarded
Green’s function (traveling forward in time)

* The solution is then, f@;:n'agiefi,;ﬁ]?y'tﬁfs'i
4G 1 2 — 7
T
0)

TT-projector 1
Nij i = Py Py — 2P 7 % B P i a iR My AL



. 167G
Solving Oh,, = CZ T..

* Recall that generally, linear wave equations can
be solved using Green’s functions:

Gz — ') =6z — )

e Just as in electrodynamics, we need the retarded
Green’s function (traveling forward in time)

* The solution is then, f@;:n'agiefi,;ﬁ]?y'tﬁfs'i
4G 1 2 — 7
T
0)

TT-projector 1

Pro) 1 ] A the time elements are related by :

Nij i = PirPj1 — =P P ,
2 | energy-momentum conservation |



Further approximations

* To study h,, further, we will take two limits:
1. The detector is far from the source

2. The source is non-relativistic

 The detector is far (1): we can expand

7 -7 =7 -7 N




Further approximations

* To study h,, further, we will take two limits:

1. T
2. T

e Thec

ne detector is far from the source

ne source is non-relativistic

etector is far (1): we can expand




Weak field, low velocity
[, m

* For self-gravitating systemes, [ =
/ Mtot
}_MﬁUQ _ 1 GN,umtOt Reduced mass

* Such that the weak-field limit (R ,<r) implies
the low-velocity limit,

B 2G N Mot

2

—— T . Schwarzschild radius




Low velocity expansion (2)

* Imagine a source of size d and frequency w, such
that the linear velocity is v=wd

* As we will see, the GW frequency is then also
Wy = O(w), such that

Aew ~ —d
vV

* For NR systems (¢>>v), we find A w>d

* |Internal motions unimportant  multipole
expansion converges



* Using the expansion,

%
r
T (t——+

C

Multipole expansion

C

?/ , N m/ini
,?, =T + Oodr; + ...

C

* We can express h,;in moments of T’

hil(t,2) =

1G

SY(t) =

SR (t) =

/
/

>z T (t, )

PPx T (t,x)x"

(T
A x (SM 4 2GR )

C

First two moments of Tl-j



Mass quadrupole moment

° I v o __
It can be shown using TMV —

:Learn more: Show this. Hint: remember :

lthat T , vanishes outside the source :

* Here M;;is the mass quadrupole moment

hig = 1hij | quad

12G

145" ] quaa = g Nida Mia (E = /)



Take-home message

* Gravitational waves are generated by
accelerated mass distributions with a nonzero
mass quadrupole moment
— No spherically symmetric systems
— No static or uniformly moving systems

* Observable GW sources are huge and
relatively close by (or very numerous)



Take-home message

 We found the first term in the expansion to be
the quadrupole moment,

I 1 2G

tJ }quad - ; Al

Aij,klel (t — T/C)

* Let’s plug in some numbers...

—

r =140 x 10%1y

5 = [hi)] ~ 1071
My = 60Mg x ¢

quad

—

36



Gravitational waves from

BINARY MERGERS



Binary mergers

The GW observed at LIGO/Virgo are from the
inspiral phases of BNS and BBH mergers

h, (t) —ee__3fime

Inspiral phase I\/Ilerger Ringdown
l
\/

' In the inspiral phase, the | 3/2
' apprOX|mat|ons from the : Cs

I

I

fisco = 33/2 7 Gy (M + M)




> I | We choose the origin of

| our coordinate system to
| be a the center of mass

| (CM) of the binary

Tm11n
= 17702 Reduced

y mi1 + Mo mass

wasssensty (1 ) = 1, 5(3) (? - %(t))

CM frame



Polarization waveforms

Let’s first imagine the wave propagation along

i, 12G >
the z-axis: [hj;T}quad = ;CTAij’klel(t —1r/c)

Using the TT-projector,

Nij ki = Pix Pj1 — = Pij Pr

(Mll i MQQ) 'We can rotate our result :
' ; to find results for other :
: propagation directions :




More general 2
propagation direction

' Use the rotation matrix to
' translate the prewous

1 & .
hy = a (M11 (cos ¢ — sin® ¢ cos 9) + Moo (si]ﬂ2 ¢ — cos® ¢ cos? 9)
ret\ % /s A '
B ) 9 ' We chose an orbitinthe 1
M5 sin 2¢ (1 + COS 9)) '(:1: J)-plane, hence M..—0 :
2 G // . N L TTTEEEEENT T
hy = — ((Mn — Mgg) sin 2¢ cos 6 + M12 cos 2¢ cos «9)
rc



P

I
I

* ;= :

 Circular orbits :

* No backreaction 1 Yo (t) =R cos(wt)

A simplified calculation

Source motion:

ro(t) = —Rsin(wt)

P

- 14Guw?R? (1 + cos? 0

5 ) cos(2wt + 2¢)

r ct
2 4G pw? R?

r c

cos 0 sin (2wt + 2¢)



P

A simplified calculation

Source motion:
¢ Imy—I, L0 (t) — —R Siﬂ(&)t)
e Circular orbits

* No backreaction _E yo(t) = Rcos(wt)

i
: Learn more: Show this. 1

1 4Guw?R? [ 1+ cos? 6
hy == MC: ( il ) cos(2wi + 2¢)
r C 2
= = = e e = - i
2 4G uw? R? | Twice the source |
h == — 1 cos O sin(2ut +2¢)  Lfreweney |

r c



In reality, there is backreaction

* Gravitational waves carry energy away from
the (binary) system

e Settled in 1957 with the sticky bead argument




In reality, there is backreaction

* Orbital frequency: Kepler’s 37 [aw

Gn

mi1 + Mms

r3

 GW emission drains energy from the system,

PGW — Eorbit

Eorbit

— Ekin =+ Epot
1o

- -G

2r

GW emission implies
that the orbital radius
decreases and the
frequency increases



Hanford, Washington (H1) Livingston, Louisiana (L1)
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