Contribution ID: 8 Type: Contributed Oral

Results from the CUORE experiment

Thursday, 9 May 2019 17:00 (15 minutes)

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay $(0\nu\beta\beta)$ that has been able to reach the one-ton scale. The detector consists of an array of 988 TeO₂ crystals arranged in a compact cylindrical structure of 19 towers. The construction of the experiment was completed in August 2016 with the installation of all towers in the cryostat. Following a cooldown, diagnostic, and optimization campaign, routine data-taking began in spring 2017. In this talk, we present the $0\nu\beta\beta$ results of CUORE from examining a total TeO₂ exposure of 86.3 kg·yr, characterized by an average energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts/(keV·kg·yr). In this physics run, CUORE placed the current best lower limit on the 130 Te $0\nu\beta\beta$ half-life of > 1.3 × 10^{25} yr (90% C.L.). We then discuss the additional improvements in the detector performance achieved in 2018, the latest evaluation of the CUORE background budget, and we finally present the most precise measurement of the 130 Te $2\nu\beta\beta$ half-life to date.

Email

beschmidt@lbl.gov

Primary author: SCHMIDT, Benjamin (Lawrence Berkeley National Laboratory)

Presenter: SCHMIDT, Benjamin (Lawrence Berkeley National Laboratory)

Session Classification: Parallel session 1

Track Classification: Neutrino Physics and PMNS Metrology