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Today

e What is ASPIRE 7?
v Introduction to the new ASPIRE experimental facility at TRIUMF.
e 3 upcoming ASPIRE projects:

v Fission-track dating enhancement of geologic mineral grains.
New “regime” for fission-track age-dating in geology (1st beam time in August).

v Astrochemistry on icy interstellar grains.
Production/degradation of complex molecules on grain surfaces in space.

v Radiolysis of water & origins of life.
Implications to natural production of organic molecules by radiation.
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ASPIRE — location in ISAC-l (HEBT1)
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Figure 2: TRANSOPTR simulation[1] of accelerated beam through ISAC-DTL, using up to Tank-4, for
an E/A of 1.0 MeV/u.
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Scientific purpose of ASPIRE

Non-Exhaustive List of Science using TRIUMF Accelerators & Radioisotopes

e |rradiate diverse types
of samples with ISAC
accelerated beams.

e Enable leading-edge
interdisciplinary
science with TRIUMF
accelerators, of high
benefit to the wide
scientific community.

e Explore new “non-
traditional” research
areas for TRIUMF +

collaborators.

FIELD SCIENCE PROBLEM(S) COLLABORATORS

(i) interstellar, nebular, and PPD element-isotope fractionations,

. enrichments, and depletion processes, (ii) radiation-induced llsa Cooke (UBC)
AStrOChemlStry molecular chemistry on interstellar icy grains, (iii) solar wind
studies & implications for SS or exoplanet chemistry. Eva Enkelmann (uCalgary)

(i) irradiation of meteoritic materials, (ii) early solar system
chemistry, (iii) planetary/exoplanetary atmospheres, (iv) PPD
homogeneity vs heterogeneity & canonical ratios of CAls Oliver Warr (uOttawa)
and chondrules for radioisotopic chronometers.

Scott Hopkins (uWaterloo)
Cosmochemistry

(i) water radiolysis, origins of life studies (organic molecules Barb Sherwood-Lollar (UofT)

from inorganic starting materials), (ii) degradation of
contaminants in polluted water, (iii) fundamental water radiolysis
physics/chemistry, (iv) uWaterloo FEL & ARIEL E-Linac science.

other...

Radiolysis

TRIUMF INTERNAL:

Terrestrial (i) improving fission track age-dating of geological minerals,
(i) beam-induced damage effects in geologic minerals with Nigel Smith
GeOIOgy applications to radiometric chronometry. Peter Kunz

Camille Belanger-Champagne

.. . . . _ Life Sciences Division
(i) irradiation of electronics and advanced materials with heavy

Other accelerated beam, (i) material science applications, (iij) medical other. ..
or virus research with heavy accelerated beams.
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Some ASPIRE Details y

* Highly customizable vacuum chamber for diverse/unique experiments, ,, m | -~ Direction
unique sample “targets”, diagnostics or analytical instruments, etc. | | |

e Significant number of signal input-output capabilities on the main vacuum
chamber (and HV compatible).

e Stepper motor & multi-position barrel for multiple sequential sample
irradiations (can be removed and other target configurations installed).

v Custom Zn-P-Ag phosphor screen + Raspberry Pi low-light camera
diagnostic (to see beam shape & distribution).

v/ Custom Faraday Cup at the sample plane, to assist with tuning.

ASPIRE com°| Menus .5, /home/pi/testlOC/vacuumControlMenu.ed|

v/ Custom control system has been developed. Running Pi-EPICS.

programmed by Hayden Klassen (student) for monitoring and
controlling devices connected to the system, data acquisition.
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v Many possibilities for customization & expansion.




Kidd Creek Mine, Timmins, ON
— simplified fracture network
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Radiolysis

(>3 km) Borehole(s)

T4h
A s A
I mine .
. (Cu, Zn) . Charles et al 2024 (in-progress) s
i -
| 36 P
: I Extant CI (300 kyr) px
i 129 (15 Myr) <«
: . SLRS 236y (23 Myn)
: ' : Natural radioactive background
' . ; U, Th, K, other...
| | .
: 7850 ft ! ', fracture netwo
: (2.4 km) v — 1 a, Y, n radiation
' Y, < hypersaline from natural decay
: 7 y brine
. 1.7 - 2.2 Gyr measured ; o /‘% o ‘
| ’
>12000 ft : noble gas ages L 4 4
\ 4

NOT TO SCALE



Radiolysis
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fracture waters via radiolytic reactions
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Figure 5. Organic anions production from the irradiation of calcite
suspensions B20 (0.2 g) in water (atmosphere: Ar; 60.7 MeV helium
ion irradiation; I = 10 nA).
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Rad iOIys is — Upcoming experiments at TRIUMF

* |rradiate ‘mock” water samples that mimic the complex geochemistry
of the ancient hypersaline brines from Kidd Creek Mine (vary sample
compositions and pH, brine water-rock slurries, blanks, standards, etc)
with:

(@) — Accelerated “He*2 with ASPIRE.
Up to ~50-60 MeV/u (ISAC-Il energies).

(b) — Radioisotopes including alpha-emitters 212Pb (10.6 h)
and 225Ac (9.9 d) added to samples (approved expt. L-169).
(Radiochemistry Hot-Labs, Life Sciences Division).

(c) — Y-rays at up to 10 MeV.
(ARIEL e-linac).

Systematically study possible radiolytic formation of organic molecules
(i.e., acetate, formate, other VFAs) from abiotic starting materials.

e Collaboration: C. Charles (PI), Nigel Smith, Aurelia Laxdal (TRIUMF), M.

Song (UofT), B. Sherwood-Lollar (co-Il, UofT), B. McNelil (TRIUMF),
Oliver Warr (uOttawa), Bianca Currie (student, UNB)
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Radiolytic mechanisms, and
production rates as f’'n of radiation
remain unknown.

Stable isotope fractionation factors
(i.e. 613C) completely unknown.

Nuclear/radioactive inputs/outputs
very unclear.

Conditions necessary to create/
destroy complex molecules in
extreme isolated planetary
environments?
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e Expt.L-169 is now
underway in the Life

Sciences Radiochem
labs (RCR2).
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e First results of
organic molecule
production, or not,
expected soon!
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Radiolysis @ ASPIRE

Water irradiation chamber v2.2; Custom machined by Marco Lovera & Brian Minato (TRIUMF)
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Range and energy-loss simulation of o particles incident

on different glasses. [2023-06-08, ccharles@triumf.ca.]
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Interstellar Ice Astrochemistry

Icy dusty grains =¥ site of the most complex
chemistry in the interstellar medium (ISM). Cosmic Ray-])riven

Bombardment of ice with cosmic radiation Radlatlon ChemlStry

leads to low-temperature radical chemistry on in Astrochemical Models
grain surfaces.

v Organic molecules formed are potential
precursors to biological molecules.

These basic low-temperature physiochemical
processes are complex and poorly understood,
poorly unconstrained.

Understanding ISM molecular formation,
destruction, and abundance on ices, provides
insight into galactic chemical evolution, with
implications to development on life on Earth
and beyond.
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Abstract

Cosmic rays are widely known to have significant physiochemical
impact on interstellar sources. In addition, laboratory astrophysics
experiments have indicated that cosmic ray interactions with dust
grain ice mantles could lead to astrochemically relevant species,
including complex organic and prebiotic molecules [1].

In spite of the growing body of experimental work on interstellar
radiation chemistry, incorporating cosmic ray-driven reactions and
processes into astrochemical models has proven challenging, in
part because of a lack of relevant data for many species now
included in chemical networks. Recently [2], we have developed a
general method of estimating radiochemical yields (G-values), rate
coefficients, and decomposition pathways for species that have
not been studied in detail in the laboratory in this context. Here,
we will describe the derivation and application of our method, as
well as point to much needed areas for future development in
astrochemical radiation chemistry modeling.

Suprathermal Species
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Interstellar Ice Astrochemlstry

— Sulphur Depletion Problem (SDP)

e SDP: most sulphur in the observable ISM is missing or
as yet undetected (only ~1% is accounted for).

e Does exposing icy mineral samples to energefic
cosmic ray analogues cause Interactions between
ices and minerals, and partition sulphur?

e |f S-bearing species are formed in ices during
irradiation, this supports a longstanding
astrochemical hypothesis that S is locked away
in icy dusty ISM grains.

e |Implications to understanding the origins of biological S in
the universe — e.g. in amino acids (cysteine, or vitamins Sulfur
like thiamine) + delivery to the early Earth.




Interstellar Ice Astrochemistry

— Sulphur Depletion Problem (SDP) 16

Dartois et al — Astronomy & Astrophysics 2023, 671, A156.
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Fig. 1. Influences of the different elements in processes associated with cosmic rays represented as fractional proportions on a log scale. Left:
Galactic cosmic-ray abundance. Middle: relevance of the cosmic-ray elements in processes proportional to Z2, i.e. typically the radiolytic destruc-
tion of ices constituents. Right: relevance of the cosmic-ray elements in processes proportional to Z*, i.e. typically associated with the electronic
sputtering mechanisms discussed in this article.

Collaboration: C. Charles (TRIUMF) + UBC -k
Chemistry: llsa Cooke (Pl), Elsa Yuan (Ph.D. S—-7
student), Arieh Irving-Hughes (B.Sc. student). S—*%
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Fission-Track Age-Dating Enhancement

Old Sample

1. Spontaneous fission
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Gleadow et al. (2002). Fission Track Dating of Phosphate Minerals and the Thermochronology of
Apatite. Reviews in Mineralogy & Geochemistry 48, 579-630.

Young Sample 17

Apatite — Cas(PO4)3(F,Cl,OH) is usually well suited
to FT-age dating because it contains 238U, 235U when
the crystal forms from its magma.

However, young samples (< 2 Myr) are much more
difficult or sometimes impossible to date because:

v  Less time for U damage tracks to accumulate
(sparse, weakly observable).

v’ Poor counting statistics of sparse tracks from
chemical etching.

v’ Poor precision & poor accuracy ages.

Enhancing sparse/weak tracks would provide
better counting statistics = higher precision and
accuracy ages for younger minerals.



Fission-lTrack Age-Dating Enhancement

Young Sample

(Top)

~

POLISH

(Bottom)

e Collaboration: C. Charles (TRIUMF)
+ Calgary geologists: Eva Enkelmann
(PIl), Birk Haertel (PDF), Akeek Maitra
(PDF).

— first beamtime in August

d

v

Missed track

— due to depth

IRRADIATE
at ASPIRE

N 4

POLISH / ETCH
& COUNT

OLIS stable beam
i_e_ 84Kr+15 HEBT +21

1.5 MeV/u (max)
in ISAC-

18



Fission-lTrack Age-Dating Enhancement

~ 15%angle 1 inch2
/ > tobeam irradiation
| . ___ spot.

I/ r
u
-~ Fe
/ \\ -
S
e N
4 S T e,
s oy )
.'. XAV 2R

l"/.\
Lo

“Universal” slide holder ~8 slide mounts
& grain sample mounts. per wheel.

(b)
FIGURE 2 - (a) microscope (46 x 27 x 1.2 mm) slide showing mounted and flat-polished apatite grains
in epoxy; (b) custom “universal” sample holder, which hold the microscope slides in (a) at 15°to the incident
beam as well as two additional slide sizes being either (i). 25 x 2 mm disk, or (ii). 50.8 X 76.2 x 1.2 mm
rectangle. The universal holder(s) are shown mounted to the sample wheel in (b), which are then
iInserted into the ASPIRE vacuum chamberin Fig. 1(e).
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, glasses, garnet, epidotes).

v Applications to other minerals (sphene,
zircon, micas

v Age dating strata (difficult).



Conclusions

 ASPIRE = new experimental facility at TRIUMF-ISAC.

21

e |rradiating wide varieties of “planetary material samples” (solids, liquids, gases) to study leading-edge
problems in planetary sciences, astrochemistry, early solar system cosmochemistry, geology, origins of life,,

requiring light or heavy accelerated beams.

e 3 upcoming ASPIRE projects — to increase the breadth & depth of TRIUMF science with accelerated
beams & radioisotopes, to address novel, exciting, leading-edge problems in other fields:

v Fission-track dating enhancement of geologic mineral grains.

New “regime” for fission-track age-dating in geology (1st beam time in August). ASPI R E
v Astrochemistry on icy interstellar grains. AStrochemistry & Planetary
Production/degradation of complex molecules on grain surfaces in space. materials IRradiation

Experimental facility

v/ Radiolysis of water & origins of life.
Implications to natural production of organic molecules by radiation.

e TRIUMF’s unique accelerated beam infrastructure at ISAC, together with “wet chemistry” experiments in the
Life Sciences radiochemistry labs, offers a perfect world-class combination of possibilities for novel

interdisciplinary projects across fields.



