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P5 = Particle Physics Project Prioritization Panel

Task: develop 10-year strategic plan for US particle physics
Input: 2021 Snowmass Community Planning Exercise (US and global community)
Output: ~ 150 page report with specific recommendations for funding agencies

3 overarching science themes, with 2 focus areas each:

Decipher Explore llluminate
the New the
Quantum Paradigms Hidden
Realm iIn Physics Universe

Elucidate the Mysteries Search for Direct Evidence Determine the Nature
of Neutrinos of New Particles of Dark Matter

Reveal the Secrets of Pursue Quantum Imprints  Understand What Drives
the Higgs Boson of New Phenomena Cosmic Evolution

Impact: TBD — but report best summary of community consensus at present
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Strong collider program central for 2 Exploring the properties of the Higgs
present and future of particle physics as a path to advance particle physics
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Higgs properties — and the Higgs potential — linked

to many of the outstanding puzzles in particle physics
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EWS'B, '\:\3\/0\(' ba\(\joaev\es'\s. oo
 LHC (ATLAS, CMS) until end of Run 3 (2026)

Higgs — 1nvisible (few X 1%)
* HL-LHC (starting 2029) .  Hjggs to SM couplings (~1% or less)

W

Higgs self-couplings (~ 50%o)

§irst time Higgs potentidl tested experimentally!!

» Higgs factory: FCC-ee or ILC = Higgs physics as a precision science
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Towards a 10 TeV parton-COM Collider

Future progress requires higher energies

 R&D towards a 10 TeV parton-COM — e.g. 100 TeV proton collider (FGC-hh), or

10 'TeV muon or e+e collider

» Aggressive R&D to determine feasibility/parameters of a muon collider at Fermilab *

e At mimmimum:

- Higgs potential (self-couplings) at the percent level
- New resonances: e.g. Z' up to 45 TeV directly, and 100 TeV indirectly (C)

- Ulimate sensitivity for other Higgses

( In the end: only way to directly probe physics at the smaller distances J

* Fov wmove See: “\vxaugwa\ US Muow collider Meet‘ma” @ Ferwilab August 2024
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Precision Cosmology

Continue strong support for cosmology as a precision science

via galaxy surveys and precision GCMB measurements

>m, < tew x 0.01eV

» CMB-S4 — AN.g ~ few x 0.01

~ish.. Primordial GWs from inflation

AlSo... Simons observatory (100 §financed by Simons Foundation)

* LLSST (Legacy Survey of Space and Time) and LLSS'T Dark Energy Science

Collaboration at the Rubin observatory

* DESI (Dark Energy Spectroscopic Instrument) and DESI-II  arXiv:2404.03002

( Y
Most powerful when combined: galaxy surveys and CMB

measurements will provide strongest test of ACDM paradigm
\_ J




The search for Dark Matter continues...

* For WIMPs, via direct detection experiments like DarkSide-20k, L.Z, SuperCDMS,
XENONNT



The search for Dark Matter continues...

MCALLMPS, via direct detection experiments like DarkSide-20k, L.Z, SuperCDMS,
XENO@ yust veached “weutrino 5603”




The search for Dark Matter continues...

e For Ps, via direct detection experiments like DarkSide-20k, L.Z, SuperCDMS,
XENONNT

just veached “neutvino foq”

* Non-WIMPs (e.g. QCD axion, other light bosons...) via small-scale experiments
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The search for Dark Matter continues...

e For Ps, via direct detection experiments like DarkSide-20k, L.Z, SuperCDMS,
XENONNT

just veached “neutvino foq”

* Non-WIMPs (e.g. QCD axion, other light bosons...) via small-scale experiments

= Recommendation to implement new small-project portfolio (ASTAE)
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Medium-scale precision experiments

* Strong commitment to LHCb and Belle 11 (and upgrades)

* Muon g-2, MuZ2e

[F lavor and CP structure of the SM one of the enduring mysteries of particle physics]
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* Strong commitment to LHCb and Belle 11 (and upgrades)

* Muon g-2, MuZ2e

(F lavor and CP structure of the SM one of the enduring mysteries of particle physics]

Theory

* Recognition of multiple exciting theoretical developments
* Vital to provide framework/motivation for experiments and their interpretation

* Emphasis on critical role of theory to drive field forward, beyond its connection to

individual experimental projects: new answers, new questions

wove |atev...
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2. Gravitational waves and particle physics



Gravitational Waves and Particle Physics

Gravitational wave detectors provide a new window 1nto our Universe

103
1 EPTA cowmyact binavries i
1073 +
SkA
RS
= 107°% +
o0
G
SUpPgymassive
-9 _
10 naries  LISA
10—12 -
extvemwme wass
vatio wmspivals ®B%O
1071 41— : : : : : : :
10—t 1078 1076 1074 102 1 102 10* 109

f()/HZ



Gravitational Waves and Particle Physics

Beyond astrophysics, gravitational wave detectors

are a powerful probe of our cosmological history



Gravitational Waves and Particle Physics

Beyond astrophysics, gravitational wave detectors

are a powertul probe of our cosmological history

. . Lo To T.T
Current frequency of primordial gravitational waves: — f ~ H(T}) X TO ~ MQO
* Pl

= f~1nHz—1kHz corresponds to temperatures T, ~ 10 MeV — 107 TeV

* |arge chuck of our coswological history after nflation and befove BBN *



Gravitational Waves and Particle Physics

Beyond astrophysics, gravitational wave detectors

are a powertul probe of our cosmological history

. . Lo To T.T
Current frequency of primordial gravitational waves: — f ~ H(T}) X TO ~ MQO
* Pl

= f~1nHz—1kHz corresponds to temperatures T, ~ 10 MeV — 107 TeV

* |avge chuck of our coswological history after inflation and befove BBN *

* Observation of primordial gravitational waves would be first direct probe of the

early Universe prior to BBN

* Gravitational wave detectors probe the existence of new d.o.f./hidden sectors

even 1f they only interact with the Standard Model gravitationally
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Gravitational Waves and Particle Physics

Cosmological phase transitions that occur via bubble nucleation a well-motivated possibility

both n (minimal) extensions of the SM and w wore general hidden Sectors

Bubble wall collisions a significant Hogan (1986); Kosowsky, Turner, Watkins (1992);
source Of gravitatiOnal waves Kamionkowski, KOSOWSky, TUI'I]@I‘ [astro—ph/9310044]
.. H(T,)™3 :
Several collisions per Hubble volume, plus )3 <« 1 = stochastic background
0
1o T,
e.g. ~ R 'x = ~ 1mHz x
8 Jo T, 100 GeV

(LISA will probe the nature of the electroweak scale]

see e.g. [1512.06239] & [1910.13125] by LISA Cosmology Working Group
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Gravitational Waves and Particle Physics

Beyond phase transitions. ..
* Collapse of domain wall networks

* Cosmic string dynamics

( At the moment: stochastic GW signal seen by pulsar timing arrays, with origin TBD... J

see NANOGrav [2306.16213], EPTA [2306.16214], PPTA [2306.16215] & CPTA [2306.16216]

Beyond current/planned detectors...

* New ideas for pHz gravitational wave detection

e.g. Fedderke, Graham, Rajendran [2112.11431]
Fedderke, Graham, Macintosh, Rajendran [2112.11431]

* Beyond-the-SM sources of gravitational waves at f > 1kHz and f < 1nHz,

but no competitive experiments
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3. Dark matter cornucopia



WIMPs

* Alot of WIMP parameter space explored by direct detection experiments...

all the way down to the “heutrino %309” (XENONWT)

10-4
BN ® Observed Result (90% CL)
- [
_ 107 ° PJDM X 20%-exposure Sensitivity
(@]
3 e
g 10-8 ﬂoﬂm (o O Sensitivity Goal
- pLs 7)3?‘»‘“'“ MBS ® eSO
8 10 oD
8 ﬂXQO o .
g ijx"cp ® ~E?BA¥
—46 Y\ 1l e
g " KNPt ™
A 1077 L ATE
g s
(3 107 neutrino fog (Xe) ’(Eﬂ'@?‘ SR S |
107 yAVLN
1 1 1 | I ] 1 1 | I 1 1 1 | I 1 1 1 | | 1 1 1 | I 1 1 1 | I 1 1 1 | | 1] 1 1 | I 1 1 1 |

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045
Year



WIMPs

* Alot of WIMP parameter space explored by direct detection experiments...

all the way down to the “heutrino %309” (XENONWT)

* Still regions of parameter space left to explore

10-4
BN ® Observed Result (90% CL)
- [
_ 107 .PJDM X 20%-exposure Sensitivity
(@]
3 e
g 10-8 ﬂoﬂm (o O Sensitivity Goal
> KT uasS @ side SO
L 10-# .D‘a‘\(
% N100 @ .
g X0y o ~E?BA¥
—46 V11 e
g " KNPt ™
A 107 L ATO
g s
(3 107 neutrino fog (Xe) )(Bﬂ-e¥X —&__ - |
107 yAVLN
1 1 1 | I ] 1 1 | I 1 1 1 | I 1 1 1 | | 1 1 1 | I 1 1 1 | I 1 1 1 | | 1] 1 1 | I 1 1 1 |

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045
Year



WIMPs

* Alot of WIMP parameter space explored by direct detection experiments...

all the way down to the “heutrino %309” (XENONWT)

* Still regions of parameter space left to explore

 Also important to consider other dark matter candidates...
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* Natural production mechanism: e.g. “misalignment” (produced cold) or
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Light bosonic dark matter

Dark matter particle could be as light as ~ 107%% eV

= very light, weakly coupled, bosonic dark matter

Popular dark watter candidates--- Sov 9ood veasowns!

» Axion-Like-Particles (ALPs) are naturally light and present in UV-completions
of the SM

e.g. ACD axion, “string axiverse” axions, etc: -

* Natural production mechanism: e.g. “misalignment” (produced cold) or

emission by cosmic strings (produced relativistic)

i§ axions exists they will make *sowe* Svaction 0§ the dark watter

 Difficulty: vast parameter space of mass and couplings...
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Asymmetric Dark Matter

Observationally:

{lpm
= O(1
Qbaryon ( )

W the absence of d\jV\awx’\cs' this
looks |ike an tnsane nitidl condition

ADM: DM is produced through an asymmetry, just like the baryon asymmetry of the SM

Nussinov (1985)
Gelmini, Hall, Lin (1987)

Cpwm mMDpM  7DM
‘ Qbaryon Mbaryon T/baryon

O(l) it 7pM ~ TIbaryon and Mmpm ~ Mbaryon

edsy to avvange if ‘connector interdction  needs to be dynamically vealized,
dctive n edrly universe othevwise haven't explained the DM
to bavyown vatio!



Where to l00k...?

* In specific implementations , DM often inside the “neutrino fog”

see e.g. IGG, Lasenby, March-Russell [1505.07410]; Farina [1506.03520]
Bodas et al [2401.12286], etc...

* There is no DM annihilation, and DM can build to form composite objects:

from atomic DM... all the way up to black holes


https://arxiv.org/abs/1506.03520
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Where to l00k...?

* In specific implementations , DM often inside the “neutrino fog”

see e.g. IGG, Lasenby, March-Russell [1505.07410]; Farina [1506.03520]
Bodas et al [2401.12286], etc...

* There is no DM annihilation, and DM can build to form composite objects:

from atomic DM... all the way up to black holes

More generally...

Qpm This the only reason to believe the DM 1interacts

with the SM with any significant strength

Need new dark matter “paradigms” that provide

theoretical guidance 1n our search for dark matter

see e.g. Brzeminski, Hook [2310.07777]


https://arxiv.org/abs/1506.03520

Today...

4. Strong-CP and flavor — beyond the QCD axion
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* Huge experimental effort to probe the axion paradigm



The strong CP problem

Strong GP problem: It 1s not possible to understand the absence of strong
CP violation based on the underlying symmetries of the Standard Model

0=0s+0, <1070

0sg° ) 1/ kv 0, = argdet M,

o
2317 (GG

LD

a d\jV\awﬁca\ wechanism ov Some additional Symwmetyy
Structure 1§ necessary to explain why @ iS SO tiny

* Most popular solution is the QCD axion: minimal, can be DM, axions a soft

prediction™ of string theory. .. Peccei, Quinn (1977), Wilczek (1978), Weinberg

(1978), KSVZ (1980), DFSZ (1981)

* Huge experimental effort to probe the axion paradigm

what about alternative solutions to the Strong c? problem?
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Spacetime symmetry solutions to strong CP

Non-zero 0 breaks both P and CP

= restoring either can provide a solution to strong CP

The origin of the strong CP problem lies in the electroweak sector —

natural to consider extensions that restore spacetime symmetries

/ R

CP P
Nelson; PLLB 136 (1984) Babu, Mohapatra; PRL 62 (1989) & PRD 41 (1990)
Barr; PRL 53 (1984) Barr, Chang, Senjanovic; PRL 67 (1991)
H H’
Su(3) x SU(Z)L x SU (Z)’R x 0(I) “Mirror” sector 1s an exact copy of the
| SHV‘/'/L Standard Model, except that SU(2),
L Q e U . doublets become doublets of SU(2) g
L e w d w d’ v
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gauge bosons at the LHC ATLAS; 1906.05609
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Parity solutions to strong CP

* Leading constraint on the parity-breaking scale from direct production of exotic

gauge bosons at the LHC ATLAS; 1906.05609

/ e /
M mW/:%ZﬁTeV = /> 18 TeV
| )

 Future colliders will such as a 100 TeV pp machine sensitive to myy/, mz: ~ 40 TeV

colliders are *central* to probe pavity solutions to Strowng c?

* Parity structure ameliorates flavor problem

* Interesting cosmological signatures, including gravitational waves

Critical to explore new solutions to strong GP
problem and their experimental implications

Craig, IGG, Koszegi, McCune [2012.13416]



Parity solutions to strong CP
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Plot courtesy of A. Jayich’s lab at UGSB (see also arXiv:2010.08709)
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Some of the problems of the SM, like the Electroweak Hierarchy and the

Cosmological Constant problems, are problems of Effective Field Theory

vooted own assumption that EFT iS the vight tool to approdch these puzzles

EFT organizes a theory in terms of energy scales

Decoupling — The behavior of a physical system in the infrared (IR)
1s largely independent of 1its features 1n the ultraviolet (UV)

Wilson, Kadanoft, etc... 1970s

* howevey:--. *

Rules of EF1 need to be modified in a gravitational theory

evidence §row black hole thought experiments
and Sorwal vesedrch on Stving theovy
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Gravity and EFT

* Sub-extensive entropy:

A

e L M3, VS Sqrr ~ LT3 < L3A°

SBH =

Bekenstein (1973), Hawking (1975)

* No global symmetries in quantum gravity

Z.eldovich (1976); Banks, Dixon (1988);
Abbott, Wise (1989); Coleman, Lee (1990); etc

Can deviations from the EFT paradigm provide new
light on some of the problems of the SM?

A few 1deas... but a lot of room for exploration!

K\A’ CC problem: Cohen, Kaplan, Nelson [9803132] + Banks, Draper [1911.05778]
EW hierarchy: Cheung, Remmen [1402.2287] + Craig, IGG, Koren [1904.08426]



Today...

6. QFT in the non-perturbative regime



QFT beyond perturbation theory

Non-perturbative QFT crucial to understand
the Standard Model and beyond

* Despite numerical lattice simulations, still no proof of QCD confinement

* Soliton-like defects absent in the SM, but common in many extensions

e.g. dowmadin walls, coswmic Strings---

 Evolution and interactions of non-perturbative defects crucial to understand

their evolution in the early universe

wWith wwplications fov gvavitational wave Signatuves and DM production

* Interest in new (generalized) symmetries — may play a role 1n particle physics

see e.g. [2205.09545] and refs.

* Quantum computer as simulators of strongly interacting theories and QF1 1n

medium



Conclusions

Success 1n particle physics means never losing the drive to explore places

we have never been before — at smaller distances or higher intensities

At the moment: many major puzzles + theoretical developments +

diversity of experiments — an exciting time to be a particle physicist

Thank you!



Figure 1 — Program and Timeline in Baseline Scenario
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Small-Scale Experiments

Proliferation of many small-scale experiments over the last decade,

many focused on detection of light bosons particles and dark matter
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Recommendation to implement a new small-project portfolio:

“Advancing Science and Technology through Agile Experiments” (ASTAE)



