

Precision Measurements for the Discovery of New Physics The PIONNER and NA62 Experiments

Bob Velghe (he/him)*

TRIUMF Science Week July 23, 2024

*bvelghe@triumf.ca

Outline

CERN NA62 Experiment - Installation of the last STRAW detector in 2014 [CERN-PHOTO-201409-176-4]

- 1 Precision Measurements?
- 2 Pions PIONEER Experiment
- 3 Kaons NA62 Experiment
- 4 Conclusion

Precision Measurements - An Historical Example

In '58, "Theory of the Fermi Interaction" \rightarrow Weak neutral currents are not allowed.

(Sudarshan, Marshak; Feynman, Gell-Mann)

In the '60s, new unification models introduce a neutral boson (*Z*) making these transitions possible, but *Z* mass predicted to be > 80 GeV. **Out of reach!** (Salam and Ward, '64; Weinberg, '67)

24 e⁺e⁻ pairs $\overline{p}p \rightarrow Z^{0} \rightarrow e^{+}e^{-}$

After preselection:

In '73, Gargamelle takes 375k ν and 360k $\overline{\nu}$ pictures, **one(!)** $\overline{\nu}_{\mu}e^{-} \rightarrow \overline{\nu}_{\mu}e^{-}$ **candidate**. Finally, in '83, UA1 and UA2 observe the **direct production** of *Z* bosons (CERN SPS).

[F.J Hasert et al, '73], [UA2 Collaboration, '83]

Precision Measurements - An Historical Example

In '58, "Theory of the Fermi Interaction" \rightarrow Weak neutral currents are not allowed.

(Sudarshan, Marshak; Feynman, Gell-Mann)

In the '60s, new unification models introduce a neutral boson (Z) making these transitions possible, but Z mass predicted to be > 80 GeV. **Out of reach!** (Salam and Ward, '64; Weinberg, '67)

In '73, Gargamelle takes 375k ν and 360k $\overline{\nu}$ pictures, **one(!)** $\overline{\nu}_{\mu}e^{-} \rightarrow \overline{\nu}_{\mu}e^{-}$ **candidate**. Finally, in '83, UA1 and UA2 observe the **direct production** of *Z* bosons (CERN SPS).

[F.J Hasert et al, '73], [UA2 Collaboration, '83]

NA62 – Kaons Decaying in Flight

Proposed in 2005, running 2016–2025 ~200 collaborators in ~30 institutes Hosted at CERN

PIONEER - Pions Decaying at Rest

PIONEER

Proposed in 2022, running 2030– ~80 collaborators in ~20 institutes Hosted at Paul Scherrer Institut (PSI)

PIONEER - Pions Decaying at Rest

Phase I: Lepton Flavor Universality Test

$${\cal R}_{e/\mu} = rac{{\sf \Gamma}\left(\pi^+ o e^+
u(\gamma)
ight)}{{\sf \Gamma}\left(\pi^+ o \mu^+
u(\gamma)
ight)}$$

Standard Model \rightarrow All leptons couple to the W^{\pm} bosons with the same strength ($g_e = g_{\mu}$)

Uncertainty on $R_{e/\mu}^{\text{SM}}$ is 0.01%, a factor 15× lower than the experimental value

$$\begin{split} R_{e/\mu} & \begin{array}{c} 1.23524(15) \times 10^{-4} \\ 1.2327(23) \times 10^{-4} \end{array} & \begin{array}{c} (\text{SM})_{\text{[Phys. Rev. Lett. 71 (1993) 3629],[Phys. Rev. Lett. 99 (2007) 231801]} \\ (\text{World average, dominated by PIENU})_{\text{[PDG 2022], [Phys. Rev. Lett. 115 (2015) 071801]}} \end{array} \\ \text{Measurement sensitive to NP up to \mathcal{O} (1000) TeV in some scenarios [Annu. Rev. Nucl. Part. Sci. 61 (2011) 331]} \end{split}$$

Strong complementary program: CKM matrix unitarity (phase II), heavy neutral leptons, etc.

$R_{e/\mu}$ Measurement – Basic Principles

Focus on **positrons** $(\pi^+ \rightarrow e^+ \nu)$ and $(\pi^+ \rightarrow \mu^+ \nu \rightarrow e^+ \nu \overline{\nu})$

"Count and sort" the positrons emitted by the stopped pions \rightarrow Many systematics cancel in $R_{e/\mu}$

Understanding the $\pi^+ \rightarrow e^+ \nu$ low-energy tail is key! Positron energy measurement is imperfect: finite resolution, energy leakages, photonuclear interactions, ...

PIONEER - Beamline & Detector

Decays at rest!

High intensity pion beamline at PSI (π E5) 55 < P < 70 MeV/*c*

Key elements:

- $ATAR \rightarrow$ Reconstruct decay topologies,
- Tracker \rightarrow Track positron pos. and time,
- $Calo \rightarrow$ Measure the positron energy.

Proposal approved by PSI in 2022 arXiv:2203.01981, PSI website

PIONEER - LXe Calorimeter

Calorimeter: area of focus for the TRIUMF team. Part of the LXe R&D overlaps with the nEXO R&D program and the LoLX experiment.

Key qualities: Uniform response, able to contain e^+ showers ($\approx 20 X_0$), $\Delta E/E < 2\%$, $\sigma_t < 200$ ps.

Liquid xenon (scintillation light) and LYSO crystals are being considered: Uniformity, energy resolution, pile-up suppression, etc. Both technologies are promising.

A Monte Carlo simulation effort is ongoing and small-scale prototypes are being built.

LXe Calorimeter – Prototype

Reuse the MEG large prototype cryostat with a newly developed inner structure. The setup will be tested with positrons (20 < P < 100 MeV/c).

A volume of \approx 120L of LXe will be instrumented with UV sensitive photomultiplier tubes (PMT).

The main objectives are:

- Study the energy resolution,
- Validate the Monte Carlo simulations,
- Study the pile-up suppression,
- R&D for the calibration system.

A LXe purity monitor is also currently being developed at TRIUMF (synergies with LoLX).

Measuring the Pion Lifetime at TRIUMF

The pion lifetime enters as an external parameter in the extraction of $R_{e/\mu}$ from the data.

Our goal is to bring the pion lifetime uncertainty below 0.01%

Measurement of the M20 beamline characteristics in 2023. Accelerator and CMMS groups involved. LOI presented to the PP-EEC in 2024, endorsed for test shifts on M20 and 2C1.

B. Velghe

CERN SPS NA62 Experiment – Kaon Decay-in-Flight

Doug Bryman, Toshio Numao, B. Velghe

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ probes the Standard Model up to energy scales out of reach for direct production. Measurable deviations are predicted for many New Physics scenarios, e.g.

- Z' models [A. J. Buras, F. De Fazio, J. Girrbach, 13'] [A. J. Buras, D. Buttazzo, R. Knegiens, 15'] [J. Aebischer, A. J. Buras, J. Kumar, 20']
- Extra dimensions [M. Blanke et al, 09']
- Leptoquark models [C. Bobeth, A. J. Buras, 18'] [S. Fajfer, N. Košnik, L. Vale Silva, 18']
- Littlest Higgs models [M. Blanke et al, 16']
- Lepton Flavour Violation models [M. Bordone et al, 17']

Strong complementary program: Dark photons, heavy neutral leptons, LNV/LFV decays, etc.

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ – Standard Model & Previous Measurements

Flavor Changing Neutral Current; the decay is extremely suppressed: $s \to d \sim \frac{m_t^2}{m_{t'}^2} |V_{ts}^{\star}V_{td}|$

Theoretical uncertainties well controlled: QCD and electroweak corrections; hadronic matrix element related to $K^+ \rightarrow \pi^0 e^+ \nu_{e^*}$ [F. Mescia, C. Smith, '07] [J. Brod, M. Gorbahn, '08] [J. Brod, M. Gorbahn, E. Stamou, '11]

SM branching ratio: $\mathcal{B}_{
m SM}$ $(K^+ o \pi^+
u \overline{
u}) = (8.60 \pm 0.42) imes 10^{-11}$ [A. J. Buras, '23]

Before NA62, BNL E787 & E949 (2008) $\rightarrow \mathcal{B}(\mathcal{K}^+ \rightarrow \pi^+ \nu \overline{\nu}) = 17.3^{+11.5}_{-10.5} \times 10^{-11}$ [E949 Collaboration]

NA62 – $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ – Decay-in-Flight

Signal: K^+ associated to a π^+ and missing energy (ν)

- Identification of K and π ,
- Multi-track event rejection,
- Vetoes for γ and μ , rejection $> O(10^7)$,
- $\mathcal{O}(100 \text{ ps})$ timing for K π matching,
- Excellent kinematic reconstruction $ightarrow m_{
 m miss.}^2 = (P_{\mathcal{K}^+} P_{\pi^+})^2.$

NA62 - Beamline & Detector

Decays in flight!

Secondary beam: 75 GeV/ $c \pm 1\%$, K^+ , π^+ and p (6:70:23), 750 MHz at nominal intensity.

$KTAG \rightarrow$	Kaon tagging ($\sigma_t=$ 70 ps),	$CHOD \rightarrow$	Event multiplicity,
$GTK \to$	Beam tracker (0.5 X_0 /station),	LKr, MUV1, MUV2 \rightarrow	Particle ID,
$CHANTI \to$	Charged particles veto,	LAV, IRC, LKr, SAC $ ightarrow$	Photon vetos,
$STRAW \to$	Downstream tracker,	$MUV3 \rightarrow$	Muon vetos,
$RICH \to$	Particle ID ($\sigma_t=$ 70 ps),	MUV0, HASC $ ightarrow$	Off-acceptance vetos.

The CERN NA62 Experiment in 2021 [CERN-PHOTO-202104-059-8]

NA62 – $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ – Run I

After unblinding the Run I data, we found 20 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ candidates, consistent with the expectations.

$$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat.}} \pm 0.9_{\text{syst.}}) \times 10^{-11} \text{ at 68\% CL}$$

in agreement with the SM value: (8.60 \pm 0.42) \times 10 $^{-11}$ $_{\rm [NA62\ Collaboration,\ 21' (JHEP\ O6(2021)093)]}$

 $\begin{array}{ll} \mbox{Expected signal} & 10.01 \pm 0.42_{\rm syst.} \pm 1.19_{\rm ext.} \\ \mbox{Expected background} & 7.03^{+1.05}_{-0.82} \\ \mbox{Observed candidates} & 20 \end{array}$

Rich complementary program: searches for dark photons, heavy neutral leptons, beam dump mode, etc. \rightarrow Click to see all the NA62 papers

Conclusion and Future Prospects

The group expertise with precision pion and kaon physics is going back to PIENU and the BNL E787/E949 experiments, and is continuing with PIONEER and NA62.

We are making important contributions to NA62's instrumentation and data analysis, including machine learning tools (w/ W. Fedorko).

We have a leading role in the PIONEER experiment design, with a focus on LXe calorimeter R&D efforts.

Backup Slides

NA62 – Single Event Sensitivity (SES)

 $K^+ \rightarrow \pi^+ \pi^0$ from the control trigger chain are used for normalization.

$$\mathrm{SES} = rac{\mathcal{B}\left(\mathcal{K}^+ o \pi^+ \pi^0
ight) \cdot \mathcal{A}_{\pi\pi}}{D \cdot \mathcal{N}_{\pi\pi} \cdot \mathcal{A}_{\pi
u \overline{
u}} \cdot \epsilon_{\mathrm{RV}} \cdot \epsilon_{\mathrm{trig.}}^{\mathrm{PNN}}} \propto rac{1}{\mathcal{N}_{\mathcal{K}} \cdot \epsilon_{\pi
u
u}} \; .$$

		Subset S1 (w/o COL)	Subset S2 (w/ COL)
CTRL Trig. downscale	D	400	400
	$N_{\pi\pi} imes 10^{-7}$	3.14	11.6
Acceptance (MC)	$A_{\pi\pi} imes 10^2$	7.62 ± 0.77	11.77 ± 1.18
Acceptance (MC)	$A_{\pi u ar u} imes 10^2$	3.95 ± 0.40	6.37 ± 0.64
Trig. efficiency	$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05
Random veto	$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01
	$SES imes 10^{10}$	0.54 ± 0.04	0.14 ± 0.01
	$N_{\pi uar u}^{\mathrm{exp}}$	$1.56\pm0.10\pm0.19_{\rm ext}$	$6.02\pm0.39\pm0.72_{\rm ext}$

 $\epsilon_{\rm RV}$ encodes the random vetos caused by accidental activity in the detector.

NA62 – $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ – Run I Background Analysis

Background	Expected (S1, w/o COL)	Expected (S2, w/ COL)
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+ u$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
π^{o} / $^{+} u$	< 0.001	< 0.001
Upstream	$0.54\substack{+0.39\\-0.21}$	$2.76\substack{+0.90\\-0.70}$
Total	$1.11_{-0.22}^{+0.40}$	$4.31_{-0.72}^{+0.91}$

[NA62 Collaboration, 21']

Measuring the Pion Lifetime at TRIUMF

We plan to measure the rate of surface muons emitted from the T2 target ($\pi^+ \rightarrow \mu^+ \nu$) in relation to the cyclotron's RF cycles.

Beam line M20 selects a narrow momentum range near the surface muon peak (P = 29.4 MeV/c) and suppresses protons, pions and positrons.

PIONEER Phase I – $R_{e/\mu}$

Plots from Q. Buat

Active Target – $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ Tagging

Identify (and suppress) $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ events \rightarrow Reveals the tail such that it can be corrected for.

□ Topology □ Calorimetry □ Timing

PIONEER - ATAR

Baseline design is $\approx 50\times$ alternating silicon strips planes (120 μm thick).

Low Gain Avalanche Detectors (LGAD), silicon with a thin gain layer,

100 strips, 2 cm length, with 200 μm pitch (2 \times 2 cm^2 area),

Sensors are packed in stack of 2 with facing HV side and rotated by 90° .

Strips are wire-bonded to a flex PCB, signals are routed to fast analog amplifiers (d < 5 cm), digitizers installed outside of the main detector volume.

PIONEER – Pion Beta Decay & CKM

 $\Gamma\left(\pi^+ o \pi^0 e^+
u(\gamma)
ight) = 1.036(6) imes 10^{-8}$ (PIBETA @ PSI) [Phys. Rev. Lett. 93 (2004) 181803]

$$\Gamma_{\pieta} = rac{G_{\mu}^2 \left| V_{ud}
ight|^2 m_{\pi^+}^5}{64\pi^3} \left| f_+^{\pi}(0)
ight|^2 \left(1 - R C_{\pi}
ight) I_{\pi}$$

[Phys. Rev. D 101 (2020) 091301(R)]

 $|V_{ud}| = \begin{array}{l} 0.97373(31) & (Superallowed \ \beta \ decays) \ {}_{[Phys. Rev. C \ 102 \ (2020) \ 045501]} \\ 0.9740(28)_{exp}(1)_{th} & (R_{\pi\beta}) \ {}_{[Phys. Rev. Lett. \ 124 \ (2020) \ 192002]} \end{array}$

The V_{ud} extraction from $R_{\pi\beta}$ is theoretically clean but not yet competitive with the superallowed β decays (long term goal).

But, $3 \times$ improvement in $\delta R_{\pi\beta} \rightarrow \delta 0.2\%$ on $V_{us}/V_{ud} \rightarrow$ Competitive ! (Phase II)