

The Impact of ¹⁷O alpha captures on the weak s-process

Cameron Angus 22nd July 2024

Astrophysical Background

- Two main nucleosynthesis processes for heavier-than-iron elements:
 - Rapid neutron capture (*r*-process)
 - Slow neutron capture (s-process)
- *r*-process is primary
- s-process is secondary
- Abundances of heavier-than-iron elements in the oldest stars are dominated by *r*-process

Astrophysical Motivation

- Comparing theoretical predictions to astronomical observations
- Ultra metal poor (UMP) stars are very old so can be used to test *r*-process models
- Generally, in agreement for heavy element abundances
- However, more elements with 26 < Z < 47 than expected!

The previously discounted s-process

- Responsible for ~1/2 of heavier-than-iron elements
- $t_n < t_\beta$
- Asmptotic giant branch (AGB) stars and massive stars
- Secondary nucleosynthesis process = requires preexisting 'seed' nuclei

Rotating Metal-poor Stars

- ¹²C produced in He core burning
- Rapid rotation mixes ¹²C into H-burning shell stimulating ¹⁴N production via CNO cycle
- ¹⁴N engulfed by expanding He core increases production of ²²Ne via successive α captures
- ²²Ne(α,n)²⁵Mg major source of neutrons for the s-process

• Potential to produce significant quantities of intermediate mass elements

Neutron poisoning

- ¹⁶O captures neutrons, reducing sprocess rate
- Neutrons may be liberated again in subsequent ¹⁷O(α,n)²⁰Ne reaction
- Efficiency of the 'weak' s-process depends on ¹⁷O(α,n)²⁰Ne/¹⁷O(α, γ)²¹Ne reaction rate ratio

Energy levels of ²¹Ne

- Reaction cross sections too low to measure directly
- Reaction rate dominated by narrow resonances in compound nuclear ²¹Ne
- Several unknowns about important energy levels
 - Spin-parity, resonance strengths, neutron partial widths (Γ_n)...

First experimental determination of α widths of ²¹Ne levels in the region of astrophysical interest: new ¹⁷O+ α reaction rates and impact on the weak s-process

F. Hammache,^{1, *} P. Adsley,^{2,3,†} L. Lamia,^{4,5,6} D. S. Harrouz,¹ N. de Séréville,¹ B. Bastin,⁷ A. Choplin,⁸ T. Faestermann,⁹ C. Fougères,⁷ R. Hertenberger,¹⁰ R. Hirschi,^{11,12} M. La Cognata,⁴ A. Meyer,¹ S. Palmerini,^{13,14} R. G. Pizzone,⁴ F.de Oliveira Santos,⁷ S. Romano,^{4,5,6} A. Tumino,^{4,15} and H.-F. Wirth¹⁰ ¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ²School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa ³iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa ⁴Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare, Via Santa Sofia 62, 95123 Catania, Italy ⁵Dipartimento di Fisica e Astronomia E. Majorana, Univ. di Catania, Catania, Italy ⁶Centro Siciliano di Fisica Nucleare e Struttura della Materia-CSFNSM, Catania, Italy Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bd. Henri Becquerel, 14076 Caen, France ⁸ Institut d'Astronomie et d'Astrophysique, Université libre de Bruxelles, CP 225, B-1050 Brussels, Belgium ⁹Physik Department E12, Technische Universität München, D-85748 Garching, Germany ¹⁰ Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany ¹¹Astrophysics Research Center, Keele University, Keele, Staffordshire ST5 5BG, UK ¹²Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan ¹³Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Perugia, Italy ¹⁴Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia, Italy ¹⁵Facoltà di Ingegneria e Architettura, Università degli Studi di Enna, Italy (Dated: March 26, 2024)

Experiment

- Aim to determine the resonances that significantly contribute to the ¹⁷O(α, γ)²¹Ne reaction rate and measure their absolute resonance strengths
- Used ¹⁷O(7Li,t)²¹Ne reaction to populate relevant energy levels
- 4.5 AMeV ^{17}O beam impinged on 100 $\mu\text{g/cm}^2$ LiF foil with a 30 $\mu\text{g/cm}^2$ carbon backing

Experiment

- Dec 2019 & Nov 2020
- Electromagnetic Mass Analyzer (EMMA)
 - S3 annular detector in target chamber
- Triumf-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS)

Experiment

- S3 measured the tritons ejected from the reaction (16° 37°)
- Angular distribution of tritons compared to Distorted Wave Born Approximation (DWBA) predictions to determine spinparity and
- TIGRESS used to gate on gamma-rays associated with the de-excitation of specific energy levels
- EMMA used to detect ²¹Ne recoils

Analysis S3 Excitation Energy PID gated

12 14 Excitation Energy [MeV]

600

400

200

0

Excitation Energy vs Doppler-Corrected Add-Back Energy

Summary

- EMMA+TIGRESS has been used to measure the ¹⁷O(⁷Li,t)²¹Ne reaction at TRIUMF/ISAC
- Motivation was to measure the strength of resonances that are the main source of uncertainty in the calculated rate of the ${}^{17}O(\alpha, \gamma){}^{21}Ne$ reaction
- Needed to determine the effects of ¹⁶O neutron poisoning of the weak s-process
- Weak s-process in rotating massive stars a possible site for early nucleosynthesis of intermediate mass elements
- Analysis ongoing...

Thank You for Listening!

And a big thank you to all my collaborators

A. M. Laird¹, M. Williams^{1,2,4}, B. Davids², C. Aa. Diget¹, S. Bhattacharjee², S. Gillespie², J. Williams², D. Yates^{2,3}, G. Hackman²

¹University of York, ²TRIUMF, ³University of British Columbia, ⁴University of Surrey