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An Update to the Letter of Intent for

O Utl | r] e MATHUSLA: Search for Long-Lived Particles
at the HL-LHC (arXiv:2009.01693)

i Recent Progress and Next Steps for the
* Basic Concept MATHUSLA LLP Detector [SNOWMASS]

o Backgrounds (arXiv:2203.08126)
* |dentifying LLPs
* LLP Sensitivity
 Simulations for Precise Rate Estimates
* Detector Design
* Technological Challenges
 Trackers: Scintillator Bars, Fibers, SiPMs
* Test Stands
* DAQ & Front-End Electronics



https://arxiv.org/abs/2009.01693
https://arxiv.org/abs/2203.08126
https://mathusla-experiment.web.cern.ch/

Basic Concept

Two (or more) charged
decays and particles exit detector

Neutral long-lived particle
enters detector volume

MAssive Timing Hodoscope for Ultra-Stable Neutral PArticles



Motivation

Fundamental mysteries (DM, hierarchy, neutrino masses, ...)
require physics Beyond the Standard Model (BSM)

Undiscovered neutral Long Lived Particles (LLPs) that are
invisible to LHC detectors ?

1. BSM neutral LLPs highly theoretically motivated
- Top down: naturally arise in various BSM frameworks
- Bottom up: LLPs occur in SM (e.g. muons), and can be
incorporated via similar mechanisms in BSM models
2. Hard to spot in LHC main detectors
- Most escape ATLAS / CMS if ct >> detector size (~10m)
- The tiny fraction that decay within detector get swamped by
backgrounds



An External LLP Detector for HL-LHC

> 100-1000x more sensitive than main detectors for neutral LLPs with
lifetime up to the Big Bang Nucleosynthesis limit (107 — 108 m)

» Proposed large-area surface detector located above CMS

» Air-filled decay volume with scintillator layers for tracking
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An External LLP Detector for HL-LHC

. Aiming for ~zero background analysis

. Can run standalone, or “combined” to CMS

. Will not interfere with any other LHC experiments

. Staged construction & commission: independent 10m? modules
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Backgrounds Cosmic rays
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LLP DV signal must satisfy many stringent geometrical & timing requirements
(“4D vertexing” with cm/ns precision)

Add a few extra cuts for “~zero background” (< 1 event/yr)




‘d@ﬂtlfylﬂg LLPS Incorporate MATHUSLA into CMS
L1 Trigger

Correlate event info off-line >
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https://arxiv.org/abs/1705.06327

|[dentifying LLPs

If production mode is known: Boost distribution - LLP mass
If LLP mass is known: Track multiplicity - LLP decay mode
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https://arxiv.org/abs/2007.05538

LLP Sensitivity

More benchmark models can be found in Physics Beyond Colliders at CERN:
Beyond the Standard Model Working Group Report arXiv:1901.09566



https://arxiv.org/abs/1901.09966

LLP Sensitivity: Weak- to TeV- Scale

Primary physics case: hadronically-decaying LLPs, ~10-1000 GeV

(e.g. in exotic Higgs decays)
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LLP Sensitivity: Weak- to TeV- Scale

Dark glueballs: wide sensitivity found with recently-improved modeling

(e.g. in neutral naturalness / SUSY models)
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LLP Sensitivity: DM

Scenarios where LLP - DM + SM decay is the only way to see the DM
(e.g. Freeze-In Dark Matter: BSM mass eigenstates x, (DM) and ¥, (LLP),
where X, was in thermal equilibrium with primordial plasma)
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Simulation & Reconstruction for Precise

Rate Estimates

Simulation: two packages

. FastSim, geometry-only detector
simulation, used in the sensitivity
studies shown previously

. Full Geant4 simulation underway, for
more precise background rate
projections

Reconstruction: Kalman filter-based
track and vertexing, same for
simulated as planned for real data

Simulated hadronically-decaying LLP

(H->XX, X->b bbar)
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Simulation & Reconstruction for Precise
Rate Estimates

= Full Geant4 simulation: includes cavern, access shaft, CMS, rock, detector
" Rock model from a geological survey
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" Backgrounds under detailed study:
= Upward-going muons from collisions (Pythia8)
= Backscatter (to upward-going V°) from cosmic rays (Parma)
= Neutrino interactions (Genie3)

= Quantifying the background rejection power of the high-coverage floor
veto, [partially]- instrumented walls



Simulation & Reconstruction for Precise
Rate Estimates

Roof at height of 17 m
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Detector Design




Detector Layout

Large scale tracker with surface 'yt 5 = =
veto layers
. Each tower module 9x9 m A,}e"‘f;)i@‘
area e T
. 2 veto layers, 4 or § tracking e ot T e LHC beamiine
layers |
« Height of decay volume __..-f;;;kmg|ayers
limited by the CERN building
height rules
. Floor veto layer hermetic -
(using additional tracker
plane between modules)
« Wall veto layers constructed |
separately o B




Tracker Layers

Composed of extruded scintillator bars with WLSFs (wavelength-shifting
fibers) coupled to SiPMs (Silicon Photo Multipliers)

o Bar extrusion facilities in FNAL used for several experiments (e.g. Belle
muon trigger upgrade, Mu2e)




Tracker Layers

Nominal layer design: 256 bars, each 2.7 m long

> Each layer segmented into 4 sheets of bars, made from “bar assemblies”
1.1 m wide that can be manufactured in the lab

> Qverlapping sheets, alternating layer orientation: no gaps in coverage
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Tracker Layers |
Each fiber loops through 2 bars,

readout at both end

> Transverse resolution depends
on bar width

> At between two ends gives
longitudinal resolution

..................

Bar assembly
1.1m x 2.7m

SIPM 1
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= MATHUSLA Trigger
= Tower agg module triggers on upward-going tracks within 3x3 tower volume
= Selects data from buffer for permanent storage

= Trigger to CMS

= Upward-going vertex forms trigger to CMS

= Trigger latency estimates appear compatible with CMS L1 latency budget
= Data rate well within COTS servers



Technological Challenges




Scintillator + WLSF + SiPM

= Dark-box setups at UToronto & UVic have studied different
vendors/models of scintillator, WLSF, SiPM:
» Optimizing timing (position) resolution
= Light yield
" Light leakage and fiber stress
" Temperature effects, e.g. on SiPM dark current




Scintillator + WLSF + SiPM Timing

Precise timing is critical
" Separates downward- from upward-going tracks
" Rejects low- particles from neutrino quasi-inelastic scattering
= “4D” tracking and vertexing reduces fakes/combinatorics

Several test distances D1 D2
SIPM Cosmic trigger, ¥3X3cm W T— SIPM
LED triggers for
calibration




Scintillator + WLSF + SiPM Timing
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Test Stand @ UVic

Top layer close to ceiling

64-channel “mini-module” of 4 layers,
~1m x 1.5m each

* Mechanical structure options

* Basic track reconstruction with - 8x8 SiPM array
cosmics (validation, performance) \
L]

7 C
| &

LL

* Basic triggering

* Hit efficiencies, effects of gaps
between bars

* Comparisons with simulations

| Bottom layer on the floor |



Test Stand @ UVic

Cosmic ray
events
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Test Stand @ UofT

120-channel “mini-module” of 4 layers, ~1m x 1m each

More advanced features include:

* PCBs (with pre-amps) to carry SiPM signals to readout boards

* Compression-fitting mounting apparatus to keep each SiPM in place
* Layers [re]moveable and height-adjustable individually

Potential studies include:
PCB design optimization
“Large angle” tracking

—

Modelling interfaces between modules




Cosmic ray
\ -- events

Reconstructed
muon track passing
through all 4 layers




Test Stand @ UofT

Cosmic ray events
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ASICs: Off-the-shelf with internal
charge & time readout

TOFPET 2 PETIROC 2
Channels 64 32
Coinc. timing resolution? [ps] 41 ps tested (28 ps specified) _
Energy resolution bad, larger than 1 pe good, can see single pe
Max throughput 500 kHz per channel, 32 MHz total, 40k frames/s, each frame digitizes all channels.
each event only digitizes the triggering Need external coincidence/veto algorithm to
channel prevent saturating the ASIC throughput.
Trigger configurations 2 time trigger + 1 charge trigger 1 time trigger + 1 charge trigger
Trigger logic controlled by ASIC External FPGA
ASIC uses the second time/charge  FPGA takes the trigger output from the ASCI and
trigger to veto the low level time trigger decide whether to start the event or veto it.

Timing resolution measured with ideal pulses (rising edge < 1ns)
PETIROC2 timing resolution degrades much faster than TOFPET2 when pulse has
rising edge slower than 20 mV/ns, due to ASIC internal clock leakage



A

SICs: Off-the-shelf with internal

charge & time readout

Hidden problem with PETIROC2: specified timing resolution can only be achieved
with very fast slew rate on rising edge (> 20 mV/ns)
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Why? It’s internal to the ASIC: clock leakage from digital domain, which can
only be suppressed when signal is fast

Not significant issue for apparatus where SiPM couples directly to scintillators

But has great effect when using WLSF, which adds a second time constant that
slows the rising edge
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ASICs: Off-the-shelf with internal
charge & time readout

TOFPET2

“Evaluation kits” for
both ASICs provide
basic functionality:

o HV supply
o ASIC control
o« Datareadout

Firmware Proprietary Open source

Connectivity * 16 ASICs (1024 channels) * 4 ASICs (128 channels)
* ASIC mounted on a small board, connected * ASIC on a mezzanine board of the FPGA board

to FPGA board with ribbon coax cable

Trigger conditioning * Dark currentrejection on ASIC * Dark current rejection and HW coincidence not
* HW coinc. exists, but only between two possible with the shipped firmware, but can be

ASIC groups. Channel to channel coincidence implemented by developing custom firmware
needs custom firmware.

* TOFPET2 evaluation kit works better directly “out of the box”
 Both can fully meet our requirements (dark current rejection to trigger at low threshold, hardware

coincidence) if we do some firmware development



ASICs: Off-the-shelf with internal
charge & time readout

Using TOFPET kit in test stand

. Kit comes with 4 ASICs

. We made an adapter board
to connect ASICs to detector
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Front-end electronics for each channel
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Conclusions

1 MATHUSLA, as a large-area dedicated LLP detector for HL-LHC, poses
several technological challenges that we've demonstrated we can meet

o Still have ongoing efforts for optimization and lowering costs,
especially for front-end electronics & DAQ

o Status and outlook:

Two test-stands (¥1m x 1m, 4 layers) operational in Canadian labs

Submitting CFl proposal for building 9m x 9m “MATHUSLA-10", to serve as

demonstrator and first full module in staged construction/commissioning:
Canada is taking the lead!

Aiming to have MATHUSLA-10 installed above CMS for start of HL-LHC run
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Backgrounds

* Cosmic rays

e Calibrations performed using Test Stand measurements (taken above ATLAS IP
in 2018) arXiv: 2005.02018

 Downward-going events ~3 x 10* over entire HL-LHC run, distinguished from
LLPs using timing cuts

* Upward-going events ~2 x 1019 : inelastic backscatter from CRs hitting the
floor, or decay of stopped muons in floor. Only tiny fraction (estimates
underway) produce fake DV, via decay to 3 charged tracks

* Rare production of K% harder to estimate; work underway on veto strategies

 Rare decays of muons originating from HL-LHC collisions
 Upward-going events ~2 x 102 , mostly from W and bbar production
* Work underway for optimal rejection strategies

* Charged particles from neutrino scattering in decay volume

* Neutrinos from HL-LHC collisions << 1 “fake” DV/year
* Atmospheric neutrinos ~30 “fake” DV/year, reduced to < 1 with cuts



https://arxiv.org/abs/2005.02018

Backgrounds: Recent Refined Estimates

* Cosmic rays

e C(Calibrations performed using Test Stand measurements (taken
above ATLAS IP in 2018) arXiv: 2005.02018

* Simulated using PARMA 4.0 + GEANT4

 Downward-going events ~3 x 104 over entire HL-LHC run,
distinguished from LLPs using timing cuts

* Upward-going events ~2 x 1019, produced through inelastic
backscatter from CRs that hit the floor, or through decay of stopped
muons in floor. Tiny fraction can produce fake DV, via decay to 3
charged tracks

* Rare production of K° harder to estimate; veto strategies are
available. Currently working on precise estimates and studying
rejection



https://arxiv.org/abs/2005.02018

Backgrounds: Recent Refined Estimates

 Rare decays of muons originating from HL-LHC collisions
* Expect ~2 x 108 upward-going muons over entire HL-LHC run, mostly
from W and bbar production
* Simulated using MadGraph & Pythia8
* Full study underway to demonstrate optimal rejection while
maintaining high LLP signal efficiency; test-bed for custom tracking
algorithms in unique MATHUSLA environment

* Charged particles from neutrino scattering in decay volume
* Simulated using GENIE
* Neutrinos from HL-LHC collisions: using LHC minimum-bias samples,
estimate << 1 “fake” DV/year
 Atmospheric neutrinos: using flux measurements from Frejus
experiment, estimate ~30 “fake” DV/year, reduced to < 1 with cuts



LLP Sensitivity: TeV-Scale

Any LLP production process with o > fb can give signal.
e.g. meta-stable Higgsinos

Number of observed higgsino = gravitino events Number of observed lngg=mo = gravinino events
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LLP Sensitivity: DM

Scenarios where LLP - DM + SM decay is the only way to see the DM
e.g. Inelastic Dark Matter: BSM mass eigenstates x, (DM) and ¥, (LLP)
with mass splitting A, dark photon A’ with mixing € with SM photon

Fermionic iDM, my =3m,;, A=0.03, ap=0.1 Fermionic iDM, my =3m,;, A=0.01, ap=0.1
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LLP Sensitivity: DM

Scenarios where DM model requires existence of LLP, but LLP signature does
not involve the DM particle directly

e.g. Co-Annihilating DM: BSM x and x, with mass splitting o,

X X, — 0¢ where scalar ¢ has mixing angle 0 with SM Higgs
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LLP Sensitivity: GeV-Scale

Secondary physics case: complementarity to other planned
experiments in scenarios with accessible long-lifetime limit (>100m)
e.g. singlet dark scalar S, mixing angle 0 with SM Higgs
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LLP Sensitivity: GeV-Scale

Secondary physics case: heavy neutral leptons
e.g. sterile neutrino N, whose largest mixing angle U, is with v,
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