Tackling Technological Challenges for the **WAT-LISE A Detector:** Searching for Long-Lived Particles at High-Luminosity LHC

TRIUMF SCIENCE WEEK

JULY 2024

MIRIAM DIAMOND ASSISTANT PROFESSOR

Canadian MATHUSLA Team

UVic

Faculty Heather Russell

UofA

Faculty Steven Robertson

Postdoc Caleb Miller

Undergrads Branden Aitken Sarah Alshamaily

UofT

Faculty Miriam Diamond David Curtin

Postdoc Runze (Tom) Ren

Grad Students Jared Barron Caleb Gemmel Gabriel Owh Andrija Rasovic Zhihan Yuan

Undergrads Alex Lau

Outline

- **Basic Concept**
	- **Backgrounds**
	- Identifying LLPs
- LLP Sensitivity

An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC ([arXiv:2009.01693\)](https://arxiv.org/abs/2009.01693)

Recent Progress and Next Steps for the MATHUSLA LLP Detector [SNOWMASS] ([arXiv:2203.08126\)](https://arxiv.org/abs/2203.08126)

- Simulations for Precise Rate Estimates
- Detector Design
- Technological Challenges
	- Trackers: Scintillator Bars, Fibers, SiPMs
	- Test Stands
	- DAQ & Front-End Electronics

Basic Concept

Two (or more) charged particles exit detector

Neutral long-lived particle enters detector volume

MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles

Motivation

Fundamental mysteries (DM, hierarchy, neutrino masses, …) require physics **Beyond the Standard Model (BSM)**

Undiscovered neutral Long Lived Particles (LLPs) that are invisible to LHC detectors ?

- **1. BSM neutral LLPs** highly theoretically motivated
	- o **Top down**: naturally arise in various BSM frameworks
	- **Bottom up**: LLPs occur in SM (e.g. muons), and can be incorporated via similar mechanisms in BSM models

2. Hard to spot in LHC main detectors

- Most escape ATLAS / CMS if *cτ >> detector size (~10m)*
- o The tiny fraction that decay within detector get swamped by backgrounds

An External LLP Detector for HL-LHC

- **100-1000x more sensitive than main detectors** for **neutral LLPs** with lifetime up to the Big Bang Nucleosynthesis limit $(10⁷ - 10⁸$ m)
- Proposed **large-area surface detector** located **above CMS**
- Air-filled decay volume with scintillator layers for tracking

An External LLP Detector for HL-LHC

- Aiming for **~zero background** analysis
- . Can run standalone, or "combined" to CMS
- Will not interfere with any other LHC experiments
- Staged construction & commission: independent 10m² modules

LLP DV signal must satisfy many stringent geometrical & timing requirements ("4D vertexing" with cm/ns precision)

Add a few extra cuts for "~zero background" (< 1 event/yr)

Identifying LLPs

MATHUSLA can't measure particle momentum or energy, but: **track geometry → measure of LLP boost event-by-event**

Incorporate MATHUSLA into CMS L1 Trigger **Correlate event info off-line → determine LLP production mode**

Charged Current (e.g. W')

Heavy Parent

Higgs: Vector Boson Fusion

Higgs: Gluon Fusion

 \overline{X}

Heavy Resonance

Direct Pair Production

[arXiv:1705.06327](https://arxiv.org/abs/1705.06327) 9

Identifying LLPs

If production mode is known: Boost distribution \rightarrow LLP mass If LLP mass is known: Track multiplicity \rightarrow LLP decay mode

MATHUSLA + CMS analysis would reveal model parameters (parent mass, LLP mass) with just \sim 100 observed LLP events!

LLP Sensitivity

More benchmark models can be found in **Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report** [arXiv:1901.09966](https://arxiv.org/abs/1901.09966)

LLP Sensitivity: Weak- to TeV- Scale

Primary physics case: hadronically-decaying LLPs, ~10-1000 GeV (e.g. in exotic Higgs decays)

Any LLP production process with σ > fb can give signal in MATHUSLA

arXiv:2001.04750

LLP Sensitivity: Weak- to TeV- Scale

Dark glueballs: wide sensitivity found with recently-improved modeling (e.g. in neutral naturalness / SUSY models)

LLP Sensitivity: DM

Scenarios where $LP \rightarrow DM + SM$ decay is the only way to see the DM **(e.g. Freeze-In Dark Matter: BSM mass eigenstates χ¹ (DM) and χ² (LLP), where χ² was in thermal equilibrium with primordial plasma)**

Simulation & Reconstruction for Precise Rate Estimates

Simulation: two packages

- **FastSim**, geometry-only detector simulation, used in the sensitivity studies shown previously
- **Full Geant4 simulation** underway, for more precise background rate projections

Reconstruction: Kalman filter-based track and vertexing, same for simulated as planned for real data

Simulation & Reconstruction for Precise Rate Estimates

- Full Geant4 simulation: includes cavern, access shaft, CMS, rock, detector
	- Rock model from a geological survey

- Backgrounds under detailed study:
	- Upward-going muons from collisions (Pythia8)
	- Backscatter (to upward-going V^0) from cosmic rays (Parma)
	- Neutrino interactions (Genie3)
- Quantifying the background rejection power of the high-coverage floor veto, [partially]- instrumented walls

Simulation & Reconstruction for Precise Rate Estimates

Cross-section of MATHUSLA: 4 x 4 grid of 9 m x 9 m modules, $~1$ m gap between modules

Vertical structure detail (not showing any mechanical supports etc) for a single 9 m x 9 m sensor module

Detector Design

Tracker Layers

Composed of extruded scintillator bars with WLSFs (wavelength-shifting fibers) coupled to SiPMs (Silicon Photo Multipliers)

◦ Bar extrusion facilities in FNAL used for several experiments (e.g. Belle muon trigger upgrade, Mu2e)

Tracker Layers

Nominal layer design: 256 bars, each 2.7 m long

- Each layer segmented into 4 sheets of bars, made from "bar assemblies" 1.1 m wide that can be manufactured in the lab
- Overlapping sheets, alternating layer orientation: no gaps in coverage

Tracker Layers
Each fiber loops through 2 bars,

readout at both end

- Transverse resolution depends on bar width
- Δt between two ends gives longitudinal resolution

MATHUSLA Trigger

- Tower agg module triggers on upward-going **tracks** within 3x3 tower volume
- **Selects data from buffer for permanent storage**
- **Trigger to CMS**
	- Upward-going **vertex** forms trigger to CMS
	- Trigger latency estimates appear compatible with CMS L1 latency budget
- **Data rate well within COTS servers**

Technological Challenges

Scintillator + WLSF + SiPM

- Dark-box setups at UToronto & UVic have studied different vendors/models of scintillator, WLSF, SiPM:
	- **Optimizing timing (position) resolution**
	- **E** Light yield
	- Light leakage and fiber stress
	- Temperature effects, e.g. on SiPM dark current

Scintillator + WLSF + SiPM Timing

Precise timing is critical

- Separates downward- from upward-going tracks
- Rejects low-β particles from neutrino quasi-inelastic scattering
- "4D" tracking and vertexing reduces fakes/combinatorics

Scintillator + WLSF + SiPM Timing

Test Stand @ UVic

64-channel "mini-module" of 4 layers, \sim 1m x 1.5m each

- Mechanical structure options
- Basic track reconstruction with cosmics (validation, performance)
- **Basic triggering**
- Hit efficiencies, effects of gaps between bars
- Comparisons with simulations

 \perp

Test Stand @ UVic

 $\mathbf 0$

Test Stand @ UofT

120-channel "mini-module" of 4 layers, ~1m x 1m each More advanced features include:

- PCBs (with pre-amps) to carry SiPM signals to readout boards
- Compression-fitting mounting apparatus to keep each SiPM in place
- Layers [re]moveable and height-adjustable individually

Potential studies include:

- PCB design optimization
- "Large angle" tracking

Modelling interfaces between modules

30

Test Stand @ UofT

Test Stand @ UofT

- Timing resolution measured with ideal pulses (rising edge < 1ns)
- **PETIROC2 timing resolution degrades much faster than TOFPET2 when pulse has** rising edge slower than 20 mV/ns, due to ASIC internal clock leakage

Hidden problem with PETIROC2: specified timing resolution can only be achieved with very fast slew rate on rising edge (> 20 mV/ns)

- Why? It's internal to the ASIC: clock leakage from digital domain, which can only be suppressed when signal is fast
- Not significant issue for apparatus where SiPM couples **directly** to scintillators
- But has great effect when **using WLSF**, which adds a second time constant that slows the rising edge

- **SiPM must be mounted very** close to ASIC, or using fast preamp, to obtain fast slew rate
- Still impossible to have fast enough rising edge for small signal with tens of PE

"Evaluation kits" for both ASICs provide basic functionality:

- **HV supply**
- **ASIC control**
- Data readout

- TOFPET2 evaluation kit works better directly "out of the box"
- Both can fully meet our requirements (dark current rejection to trigger at low threshold, hardware coincidence) if we do some firmware development

Using TOFPET kit in test stand

- Kit comes with 4 ASICs
- We made an adapter board to connect ASICs to detector

Front-end electronics for each channel

The MATHUSLA Collaboration

<https://mathusla-experiment.web.cern.ch/>

Conclusions

- ❏ MATHUSLA, as a large-area dedicated LLP detector for HL-LHC, poses several technological challenges that we've demonstrated we can meet
- ❏ Still have ongoing efforts for optimization and lowering costs, especially for front-end electronics & DAQ

❏ Status and outlook:

- Two test-stands (~1m x 1m, 4 layers) operational in Canadian labs
- Submitting CFI proposal for building 9m x 9m "MATHUSLA-10", to serve as demonstrator and first full module in staged construction/commissioning: Canada is taking the lead!
- Aiming to have MATHUSLA-10 installed above CMS for start of HL-LHC run

References

- John Paul Chou, David Curtin, and H.J. Lubatti. New detectors to explore the lifetime frontier. Physics Letters B, 767:29–36, Apr 2017, arXiv: 1606.06298.
- Cristiano Alpigiani et al. A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS, 2018, arXiv:1811.00927.
- David Curtin and Michael E. Peskin. Analysis of long-lived particle decays with the MATHUSLA detector. Physical Review D, 97(1), Jan 2018.
- David Curtin et al. Long-lived particles at the energy frontier: the MATHUSLA physics case. Reports on Progress in Physics, 82(11):116201, Oct 2019, arXiv:1806.07396
- Imran Alkhatib. Geometric Optimization of the MATHUSLA Detector, 2019, arXiv:1909.05896.
- Henry Lubatti et al. MATHUSLA: A Detector Proposal to Explore the Lifetime Frontier at the HL-LHC, 2019, arXiv:1901.04040.
- Cristiano Alpigiani. Exploring the lifetime and cosmic frontier with the MATHUSLA detector, 2020, arXiv: 2006.00788.
- Jared Barron and David Curtin, On the Origin of Long-Lived Particles, 2020, arXiv:2007.05538.
- Cristiano Alpigiani et al. An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC, 2020, arXiv:2009.01693.
- M. Alidra et al. The MATHUSLA Test Stand. NIMA, 985:164661, 2021, arXiv:2005.02018.
- Alpigiani et al. Recent Progress and Next Steps for the MATHUSLA LLP Detector". Proceedings of the US Community Study on the Future of Particle Physics (Snowmass), March 2022, arXiv:2203.08126.
- David Curtin and Jaipratap Singh Grewal. LLP decays in MATHUSLA, 2023, arXiv:2308.05860.

BACKUP

Backgrounds

- Cosmic rays
	- Calibrations performed using Test Stand measurements (taken above ATLAS IP in 2018) [arXiv: 2005.02018](https://arxiv.org/abs/2005.02018)
	- Downward-going events $\sim 3 \times 10^{14}$ over entire HL-LHC run, distinguished from LLPs using timing cuts
	- Upward-going events \sim 2 x 10¹⁰ : inelastic backscatter from CRs hitting the floor, or decay of stopped muons in floor. Only tiny fraction (estimates underway) produce fake DV, via decay to 3 charged tracks
	- Rare production of K^0 _L harder to estimate; work underway on veto strategies
- Rare decays of muons originating from HL-LHC collisions
	- Upward-going events \sim 2 x 10⁸, mostly from W and bbar production
	- Work underway for optimal rejection strategies
- Charged particles from neutrino scattering in decay volume
	- Neutrinos from HL-LHC collisions << 1 "fake" DV/year
	- Atmospheric neutrinos ~30 "fake" DV/year, reduced to < 1 with cuts

Backgrounds: Recent Refined Estimates

- Cosmic rays
	- Calibrations performed using Test Stand measurements (taken above ATLAS IP in 2018) [arXiv: 2005.02018](https://arxiv.org/abs/2005.02018)
	- Simulated using PARMA 4.0 + GEANT4
	- Downward-going events \sim 3 x 10¹⁴ over entire HL-LHC run, distinguished from LLPs using timing cuts
	- Upward-going events \sim 2 x 10¹⁰, produced through inelastic backscatter from CRs that hit the floor, or through decay of stopped muons in floor. Tiny fraction can produce fake DV, via decay to 3 charged tracks
	- Rare production of K^0 _L harder to estimate; veto strategies are available. Currently working on precise estimates and studying rejection

Backgrounds: Recent Refined Estimates

- Rare decays of muons originating from HL-LHC collisions
	- Expect \sim 2 x 10⁸ upward-going muons over entire HL-LHC run, mostly from W and bbar production
	- Simulated using MadGraph & Pythia8
	- Full study underway to demonstrate optimal rejection while maintaining high LLP signal efficiency; test-bed for custom tracking algorithms in unique MATHUSLA environment
- Charged particles from neutrino scattering in decay volume
	- Simulated using GENIE
	- Neutrinos from HL-LHC collisions: using LHC minimum-bias samples, estimate << 1 "fake" DV/year
	- Atmospheric neutrinos: using flux measurements from Frejus experiment, estimate ~30 "fake" DV/year, reduced to < 1 with cuts

LLP Sensitivity: TeV-Scale

Any LLP production process with σ > fb can give signal. e.g. meta-stable Higgsinos

LLP Sensitivity: DM

Scenarios where $LPP \rightarrow DM + SM$ decay is the only way to see the DM e.g. Inelastic Dark Matter: BSM mass eigenstates χ_1 (DM) and χ_2 (LLP) with mass splitting Δ , dark photon A' with mixing ϵ with SM photon

Black curve: thermal o-annihilations $\chi_2 \chi_1 \to A' \to f \bar{f}$ yield observed DM relic density

LLP Sensitivity: DM

Scenarios where DM model requires existence of LLP, but LLP signature does not involve the DM particle directly

e.g. Co-Annihilating DM: BSM χ and χ ₂ with mass splitting δ , $\chi \chi_2 \rightarrow \phi \phi$ where scalar ϕ has mixing angle θ with SM Higgs

LLP Sensitivity: GeV-Scale

Secondary physics case: complementarity to other planned experiments in scenarios with accessible long-lifetime limit (>100m)

e.g. singlet dark scalar S, mixing angle θ with SM Higgs

LLP Sensitivity: GeV-Scale

Secondary physics case: heavy neutral leptons e.g. sterile neutrino N, whose largest mixing angle U_e is with v_e

6

Zenith angle [°]