Tackling Technological Challenges for the MATESIA Detector: Searching for Long-Lived Particles at High-Luminosity LHC

TRIUMF SCIENCE WEEK

JULY 2024

MIRIAM DIAMOND ASSISTANT PROFESSOR

Canadian MATHUSLA Team

UVic

UofA

<u>Faculty</u> Heather Russell <u>Faculty</u> Steven Robertson

<u>Postdoc</u> Caleb Miller

<u>Undergrads</u> Branden Aitken Sarah Alshamaily

UofT

<u>Faculty</u> Miriam Diamond David Curtin

<u>Postdoc</u> Runze (Tom) Ren

<u>Grad Students</u> Jared Barron Caleb Gemmel Gabriel Owh Andrija Rasovic Zhihan Yuan

<u>Undergrads</u> Alex Lau

Outline

- Basic Concept
 - Backgrounds
 - Identifying LLPs
- LLP Sensitivity

An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC (<u>arXiv:2009.01693</u>)

Recent Progress and Next Steps for the MATHUSLA LLP Detector [SNOWMASS] (arXiv:2203.08126)

- Simulations for Precise Rate Estimates
- Detector Design
- Technological Challenges
 - Trackers: Scintillator Bars, Fibers, SiPMs
 - Test Stands
 - DAQ & Front-End Electronics

Basic Concept

MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles

Motivation

Fundamental mysteries (DM, hierarchy, neutrino masses, ...) require physics **Beyond the Standard Model (BSM)**

Undiscovered <u>neutral Long Lived Particles (LLPs)</u> that are invisible to LHC detectors ?

- 1. BSM neutral LLPs highly theoretically motivated
 - Top down: naturally arise in various BSM frameworks
 - Bottom up: LLPs occur in SM (e.g. muons), and can be incorporated via similar mechanisms in BSM models

2. Hard to spot in LHC main detectors

- Most escape ATLAS / CMS if cτ >> detector size (~10m)
- The tiny fraction that decay within detector get swamped by backgrounds

An External LLP Detector for HL-LHC

- ➤ 100-1000x more sensitive than main detectors for neutral LLPs with lifetime up to the Big Bang Nucleosynthesis limit (10⁷ – 10⁸ m)
- Proposed large-area surface detector located above CMS
- Air-filled decay volume with scintillator layers for tracking

An External LLP Detector for HL-LHC

- Aiming for ~zero background analysis
- Can run standalone, or "combined" to CMS
- Will not interfere with any other LHC experiments
- Staged construction & commission: independent 10m² modules

LLP DV signal must satisfy many stringent geometrical & timing requirements ("4D vertexing" with cm/ns precision)

Add a few extra cuts for "~zero background" (< 1 event/yr)

Identifying LLPs

MATHUSLA can't measure particle momentum or energy, but: track geometry → measure of LLP boost event-by-event

Incorporate MATHUSLA into CMS L1 Trigger Correlate event info off-line → determine LLP production mode

Charged Current (e.g. W')

Heavy Parent

Higgs: Gluon Fusion

Higgs: Vector Boson Fusion $p \qquad X$ $p \qquad X$

Heavy Resonance

Direct Pair Production

arXiv:1705.06327

Identifying LLPs

If production mode is known: Boost distribution \rightarrow LLP mass If LLP mass is known: Track multiplicity \rightarrow LLP decay mode

MATHUSLA + CMS analysis would reveal model parameters (parent mass, LLP mass) with just ~ 100 observed LLP events!

LLP Sensitivity

More benchmark models can be found in Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report <u>arXiv:1901.09966</u>

LLP Sensitivity: Weak- to TeV- Scale

Primary physics case: hadronically-decaying LLPs, ~10-1000 GeV (e.g. in exotic Higgs decays)

Any LLP production process with $\sigma >$ fb can give signal in MATHUSLA

arXiv:2001.04750

LLP Sensitivity: Weak- to TeV- Scale

Dark glueballs: wide sensitivity found with recently-improved modeling (e.g. in neutral naturalness / SUSY models)

LLP Sensitivity: DM

Scenarios where LLP \rightarrow DM + SM decay is the only way to see the DM (e.g. Freeze-In Dark Matter: BSM mass eigenstates χ_1 (DM) and χ_2 (LLP), where χ_2 was in thermal equilibrium with primordial plasma)

Simulation & Reconstruction for Precise Rate Estimates

Simulation: two packages

- FastSim, geometry-only detector simulation, used in the sensitivity studies shown previously
- Full Geant4 simulation underway, for more precise background rate projections

Reconstruction: Kalman filter-based track and vertexing, same for simulated as planned for real data

Simulation & Reconstruction for Precise Rate Estimates

- Full Geant4 simulation: includes cavern, access shaft, CMS, rock, detector
 - Rock model from a geological survey

- Backgrounds under detailed study:
 - Upward-going muons from collisions (Pythia8)
 - Backscatter (to upward-going V⁰) from cosmic rays (Parma)
 - Neutrino interactions (Genie3)
- Quantifying the background rejection power of the high-coverage floor veto, [partially]- instrumented walls

Simulation & Reconstruction for Precise Rate Estimates

Cross-section of MATHUSLA: 4 x 4 grid of 9 m x 9 m modules, ~1 m gap between modules

Vertical structure detail (not showing any mechanical supports etc) for a single 9 m x 9 m sensor module

Detector Design

Tracker Layers

Composed of extruded scintillator bars with WLSFs (wavelength-shifting fibers) coupled to SiPMs (Silicon Photo Multipliers)

 Bar extrusion facilities in FNAL used for several experiments (e.g. Belle muon trigger upgrade, Mu2e)

Tracker Layers

Nominal layer design: 256 bars, each 2.7 m long

- Each layer segmented into 4 sheets of bars, made from "bar assemblies"
 1.1 m wide that can be manufactured in the lab
- Overlapping sheets, alternating layer orientation: no gaps in coverage

Tracker Layers

Each fiber loops through 2 bars, readout at both end

- Transverse resolution depends on bar width
- Δt between two ends gives longitudinal resolution

MATHUSLA Trigger

- Tower agg module triggers on upward-going tracks within 3x3 tower volume
- Selects data from buffer for permanent storage
- Trigger to CMS
 - Upward-going vertex forms trigger to CMS
 - Trigger latency estimates appear compatible with CMS L1 latency budget
- Data rate well within COTS servers

Technological Challenges

Scintillator + WLSF + SiPM

- Dark-box setups at UToronto & UVic have studied different vendors/models of scintillator, WLSF, SiPM:
 - Optimizing timing (position) resolution
 - Light yield
 - Light leakage and fiber stress
 - Temperature effects, e.g. on SiPM dark current

Scintillator + WLSF + SiPM Timing

Precise timing is critical

- Separates downward- from upward-going tracks
- Rejects low-β particles from neutrino quasi-inelastic scattering
- "4D" tracking and vertexing reduces fakes/combinatorics

Scintillator + WLSF + SiPM Timing

Test Stand @ UVic

64-channel "mini-module" of 4 layers, ~1m x 1.5m each

- Mechanical structure options
- Basic track reconstruction with cosmics (validation, performance)
- Basic triggering
- Hit efficiencies, effects of gaps between bars
- Comparisons with simulations

Top layer close to ceiling

Test Stand @ UVic

Test Stand @ UofT

120-channel "mini-module" of 4 layers, ~1m x 1m each More advanced features include:

- PCBs (with pre-amps) to carry SiPM signals to readout boards
- Compression-fitting mounting apparatus to keep each SiPM in place
- Layers [re]moveable and height-adjustable individually

Potential studies include:

- PCB design optimization
- "Large angle" tracking

Modelling interfaces between modules

Test Stand @ UofT

Test Stand @ UofT

	TOFPET 2	PETIROC 2
Channels	64	32
Coinc. timing resolution ¹ [ps]	41 ps tested (28 ps specified)	50 ps tested ² (53 ps specified)
Energy resolution	bad, larger than 1 pe	good, can see single pe
Max throughput	500 kHz per channel, 32 MHz total, each event only digitizes the triggering channel	40k frames/s , each frame digitizes all channels. Need external coincidence/veto algorithm to prevent saturating the ASIC throughput.
Trigger configurations	2 time trigger + 1 charge trigger	1 time trigger + 1 charge trigger
Trigger logic controlled by	ASIC ASIC uses the second time/charge trigger to veto the low level time trigger	External FPGA FPGA takes the trigger output from the ASCI and decide whether to start the event or veto it.

- Timing resolution measured with ideal pulses (rising edge < 1ns)
- PETIROC2 timing resolution degrades much faster than TOFPET2 when pulse has rising edge slower than 20 mV/ns, due to ASIC internal clock leakage

Hidden problem with PETIROC2: specified timing resolution can only be achieved with very fast slew rate on rising edge (> 20 mV/ns)

- Why? It's internal to the ASIC: clock leakage from digital domain, which can only be suppressed when signal is fast
- Not significant issue for apparatus where SiPM couples directly to scintillators
- But has great effect when using WLSF, which adds a second time constant that slows the rising edge

- SiPM must be mounted very close to ASIC, or using fast preamp, to obtain fast slew rate
- Still impossible to have fast enough rising edge for small signal with tens of PE

"Evaluation kits" for both ASICs provide basic functionality:

- HV supply
- ASIC control
- Data readout

Firmware	Proprietary	Open source
Connectivity	 * 16 ASICs (1024 channels) * ASIC mounted on a small board, connected to FPGA board with ribbon coax cable 	* 4 ASICs (128 channels) * ASIC on a mezzanine board of the FPGA board
Trigger conditioning	* Dark current rejection on ASIC * HW coinc. exists, but only between two ASIC groups. Channel to channel coincidence needs custom firmware.	* Dark current rejection and HW coincidence not possible with the shipped firmware, but can be implemented by developing custom firmware

- TOFPET2 evaluation kit works better directly "out of the box"
- Both can fully meet our requirements (dark current rejection to trigger at low threshold, hardware coincidence) if we do some firmware development

Using TOFPET kit in test stand

- Kit comes with 4 ASICs
- We made an adapter board to connect ASICs to detector

Front-end electronics for each channel

The MATHUSLA Collaboration

https://mathusla-experiment.web.cern.ch/

Conclusions

- MATHUSLA, as a large-area dedicated LLP detector for HL-LHC, poses several technological challenges that we've demonstrated we can meet
- Still have ongoing efforts for optimization and lowering costs, especially for front-end electronics & DAQ

□ Status and outlook:

- Two test-stands (~1m x 1m, 4 layers) operational in Canadian labs
- Submitting CFI proposal for building 9m x 9m "MATHUSLA-10", to serve as demonstrator and first full module in staged construction/commissioning: Canada is taking the lead!
- Aiming to have MATHUSLA-10 installed above CMS for start of HL-LHC run

References

- John Paul Chou, David Curtin, and H.J. Lubatti. New detectors to explore the lifetime frontier. Physics Letters B, 767:29–36, Apr 2017, arXiv: 1606.06298.
- Cristiano Alpigiani et al. A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS, 2018, arXiv:1811.00927.
- David Curtin and Michael E. Peskin. Analysis of long-lived particle decays with the MATHUSLA detector. Physical Review D, 97(1), Jan 2018.
- David Curtin et al. Long-lived particles at the energy frontier: the MATHUSLA physics case. Reports on Progress in Physics, 82(11):116201, Oct 2019, arXiv:1806.07396
- Imran Alkhatib. Geometric Optimization of the MATHUSLA Detector, 2019, arXiv:1909.05896.
- Henry Lubatti et al. MATHUSLA: A Detector Proposal to Explore the Lifetime Frontier at the HL-LHC, 2019, arXiv:1901.04040.
- Cristiano Alpigiani. Exploring the lifetime and cosmic frontier with the MATHUSLA detector, 2020, arXiv: 2006.00788.
- Jared Barron and David Curtin, On the Origin of Long-Lived Particles, 2020, arXiv:2007.05538.
- Cristiano Alpigiani et al. An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC, 2020, arXiv:2009.01693.
- M. Alidra et al. The MATHUSLA Test Stand. NIMA, 985:164661, 2021, arXiv:2005.02018.
- Alpigiani et al. Recent Progress and Next Steps for the MATHUSLA LLP Detector". Proceedings of the US Community Study on the Future of Particle Physics (Snowmass), March 2022, arXiv:2203.08126.
- David Curtin and Jaipratap Singh Grewal. LLP decays in MATHUSLA, 2023, arXiv:2308.05860.

BACKUP

Backgrounds

- Cosmic rays
 - Calibrations performed using Test Stand measurements (taken above ATLAS IP in 2018) <u>arXiv: 2005.02018</u>
 - Downward-going events ~3 x 10¹⁴ over entire HL-LHC run, distinguished from LLPs using timing cuts
 - Upward-going events ~2 x 10¹⁰ : inelastic backscatter from CRs hitting the floor, or decay of stopped muons in floor. Only tiny fraction (estimates underway) produce fake DV, via decay to 3 charged tracks
 - Rare production of K⁰_L harder to estimate; work underway on veto strategies
- Rare decays of muons originating from HL-LHC collisions
 - Upward-going events $\sim 2 \times 10^8$, mostly from W and bbar production
 - Work underway for optimal rejection strategies
- Charged particles from neutrino scattering in decay volume
 - Neutrinos from HL-LHC collisions << 1 "fake" DV/year
 - Atmospheric neutrinos ~30 "fake" DV/year, reduced to < 1 with cuts

Backgrounds: Recent Refined Estimates

- Cosmic rays
 - Calibrations performed using Test Stand measurements (taken above ATLAS IP in 2018) <u>arXiv: 2005.02018</u>
 - Simulated using PARMA 4.0 + GEANT4
 - Downward-going events ~3 x 10¹⁴ over entire HL-LHC run, distinguished from LLPs using timing cuts
 - Upward-going events ~2 x 10¹⁰, produced through inelastic backscatter from CRs that hit the floor, or through decay of stopped muons in floor. Tiny fraction can produce fake DV, via decay to 3 charged tracks
 - Rare production of K⁰_L harder to estimate; veto strategies are available. Currently working on precise estimates and studying rejection

Backgrounds: Recent Refined Estimates

- Rare decays of muons originating from HL-LHC collisions
 - Expect ~2 x 10⁸ upward-going muons over entire HL-LHC run, mostly from W and bbar production
 - Simulated using MadGraph & Pythia8
 - Full study underway to demonstrate optimal rejection while maintaining high LLP signal efficiency; test-bed for custom tracking algorithms in unique MATHUSLA environment
- Charged particles from neutrino scattering in decay volume
 - Simulated using GENIE
 - Neutrinos from HL-LHC collisions: using LHC minimum-bias samples, estimate << 1 "fake" DV/year
 - Atmospheric neutrinos: using flux measurements from Frejus experiment, estimate ~30 "fake" DV/year, reduced to < 1 with cuts

LLP Sensitivity: TeV-Scale

Any LLP production process with $\sigma > fb$ can give signal. e.g. meta-stable Higgsinos

LLP Sensitivity: DM

Scenarios where LLP \rightarrow DM + SM decay is the only way to see the DM e.g. Inelastic Dark Matter: BSM mass eigenstates χ_1 (DM) and χ_2 (LLP) with mass splitting Δ , dark photon A' with mixing ϵ with SM photon

Black curve: thermal o-annihilations $\chi_2\chi_1 \to A' \to f\bar{f}$ yield observed DM relic density

LLP Sensitivity: DM

Scenarios where DM model requires existence of LLP, but LLP signature does not involve the DM particle directly

e.g. Co-Annihilating DM: BSM χ and χ_2 with mass splitting δ , $\chi \chi_2 \rightarrow \phi \phi$ where scalar ϕ has mixing angle θ with SM Higgs

LLP Sensitivity: GeV-Scale

Secondary physics case: complementarity to other planned experiments in scenarios with accessible long-lifetime limit (>100m)

e.g. singlet dark scalar S, mixing angle θ with SM Higgs

LLP Sensitivity: GeV-Scale

Secondary physics case: heavy neutral leptons e.g. sterile neutrino N, whose largest mixing angle U_e is with v_e

Zenith angle [°]

well described by simulations