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ABSTRACT

With over 100 million proton collisions at the LHC every 25 ns, it is essential
to be selective with the data that is kept for analysis. The ATLAS Hardware
Trigger must reduce 40 Mhz of data down to just 1 MHz, saving only the most
interesting events– the rest, lost forever. New developments in the use of field
programmable gate arrays (FPGAs) for hardware triggers have welcomed in
opportunities to improve event selection with more complex machine learning
algorithms, including GNNs. Demonstrated here is an initial exploration of the
capabilities and limitations of a GarNet model built for Vivado using hls4lm.

MODEL ARCHITECTURE

The GarNet [2] algorithm is designed to learn the unique detector geometries
and take advantage of its sparse structure for fast and compact reconstruction.

Figure 1: Data flow of the GarNet algorithm

1. The input features, gm,v, are encoded as learned features, fn,v,
and distance parameters, ds,v, using linear transformations.

2. A complete bipartite graph is built from the set of V vertices and
S aggregators with edge weights, Ws,v = e−d2s,v.

3. The learned features are averaged at each aggregator, hs,n, and
passed back as aggregated features, f̃s,n,v = Ws,vhs,n.

4. Aggregated features are decoded as output features, g̃k,v.

DATA GENERATION

• Over 15 million isolated
clusters from charged and
neutral single pion events

• Filtered to exclude cluster
energies below 0.5 GeV
and negative energy cells.

• Processed inputs: cluster
energy, cell count, and up
to Vmax cells (η, ϕ, s, E)

Figure 2: A graphical representation of a charged
pion cluster with 128 cells

TRAINING AND TESTING

Figure 3: Energy reconstruction by 128 cell continuously trained GarNet model

• 99% mean squared error and 1% binary crossentropy weighted loss
• Cluster energy and 3 GarNet layers feed into dense extraction layers
•Vmax cutoffs set to 32, 64, and 128 cells for inferences about scalability
• Quantization aware training with QKeras to reduce discretization issues

HIGH LEVEL SYNTHESIS

• hls4ml [1] allows for fine control over the fixed point precision at every layer
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• Converts Keras/QKeras models to firmware for implementation on FPGAs
• Compares accuracy, latency, and resources across models and precisions

Figure 4: Performance of several models at different fixed precisions

DISCUSSION

A promising workflow to bring the predictive power of the GarNet model to
high-speed firmware has been shown, yielding greater than ten-fold increases
in regression accuracy at less than half the bit-width and FPGA-deployable
models with comparable performance to the continuous Keras model. While
latency and resource consumption are expected to follow the opposite trend
to performance with regards to precision, maximum cell count holds the tight-
est limit on available parallel processes, directly impacting latency. There are
several further optimizations to be explored, including prunable parameters,
collapsing layers, and the many hyperparameters in the GarNet algorithm.
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