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Motivations

O Increasing experimental efforts to develop the
technologies necessary to study the elastic 210
proton scattering in inverse kinematics 10°]

O Attempts to use such experiments to determine Wt

the matter distribution of nuclear systems at
Intermediate energies

[Sakaguchi, Zenihiro, PPNP 97 (2017) 1-52]
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O Measurements are not free from sizeable uncertainties -~
« 10
O The Glauber model is used to analyse the data g
: : .. : = 10
O An essential step in the data analysis is the subtraction SE
of contributions from the inelastic scattering R 10

otE 7

Develop a microscopic approach to make reliable 10 20 30 40
predictions for elastic and inelastic scattering 6. (deg)

[Matsuda et al., PRC 87, 034614 (2013)]



Optical potential

Phenomenological Microscopic
p+12C (L=0,)=1/2)

4.0

Unfortunately, current used Existing microscopic optical
optical potentials for low-energy potentials can be developed In
reactions are phenomenological i a low- (Feshbach theory) or
and primarily constrained by high-energy regime (Watson
elastic scattering data. multiple scattering theory).
Calculations are more difficult.
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Road map to the optical potential

Target Density

(Structure part of the OP)

Effective Interaction
(Dynamic part of the OP)



The first-order optical potential

Mgller factor p(NA) _ ) 4 (NN)
pN — NTlpN

It imposes the Lorentz invariance of flux when we pass from
the NA to the NN frame where the t matrices are evaluated
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Up(q, K) = ) / AP (q, K, P)ipn(q, K, PYpn(q, P):

P = (pa naﬁ) N:p,n

Free two-body scattering matrix Nonlocal one-body density V=N +1\ .

' to: = Ui + Vs Gn: tos * Computationally expensive | |
Oe 02 0i 90i Los : ¢ * Obtained from the No-Core Shell Model

9goi = (E —ho — h; + 736)_1 or the Self-Consistent Green’s Function
: 1 * Calculation performed with NN and

*Simple one-body equation 3N interaction

*Can be solved easily
*Only NN interaction
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Chiral interactions

Advantages

* QCD symmetries are consistently respected
» Systematic expansion (order by order we know

exactly the terms to be included)
* Theoretical errors

* Two- and three-nucleon forces belong to the same
framework

We use these interactions as the only input

to calculate the effective interaction between
projectile and target and the target density
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Chiral interactions for NCSM

No-Core Shell Model

NCSM

In collaboration with P. Navratil and M. Gennari (TRIUMF)

* NN-N4LO + 3NInl (12C, 160)

- N4LO: Entem et al., Phys. Rev. C 96, 024004 (2017)
- 3NInl: Navratil, Few-Body Syst. 41, 117 (2007)
- cp & Ce: Kravvairis et al., Phys. Rev. C 102, 024616 (2020)

e NN-N3LO + 3NInl (913C, 67Li, 19B)

-N3LO: E&M, Phys. Rev. C 68, 041001(R) (2003)
- 3NInl:  Navratil, Few-Body Syst. 41, 117 (2007)
- ¢p & ce: Soma et al., Phys. Rev. C 101, 014318 (2020)
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4
Assessing the impact of the _ 4
§ 10 o eee p160 = NN-N LO + 3NInl
3N interaction S 10° "o
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General equation for the optical potential 2 10 °%0 @y
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Assessing the impact of the 3N interaction

Vorabbi et al., PRC 103, 024604 (2021)
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* For all nuclei we found very small contributions to the 10'F -
differential cross section 12, (o) 2C :
* The contributions to the spin observable are larger and 100’1 1 ‘
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Extension to non-zero spin targets
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Chiral interactions for SCGF

Self Consistent Green’s Function (SCGF)

_P3p

// P1/2:15/2

In collaboration with C. Barbieri (Milan) and V. Soma (Paris)
Soma, SCGF Theory for Atomic Nuclei, Frontiers 8 (2020) 340
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Results for proton scattering off 40.48Ca
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[Vorabbi et al., PRC 109, 034613 (2024)]
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* First microscopic optical potential for calcium and nickel from ab initio densities
» For this comparison the densities are always computed with the NNLOsat



Results for proton scattering off 38.50Nj

[Vorabbi et al., PRC 109, 034613 (2024)]
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The data for the analysing power is remarkably well described!
(but remember that the NN potential does not reproduce the NN amplitudes)



Results for Calcium isotopic chain

[Vorabbi et al., PRC 109, 034613 (2024)]
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Distorted wave theory of inelastic scattering

The Inelastic transition amplitude

Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1215 (1982)]

Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1233 (1982)]

T (Ko ) = / dr” / dr bt (o, 1) Ui (1 1) o (o, 7)

* The optical potential used for the excited
state Is supposed to be different from that
one used for the ground state

» With our approach we can distinguish the
two states and calculate two different
optical potentials

» The impact of this will be investigated in
future works
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Inclusion of medium effects

First-order term of the spectator expansion The first-order term is a 3-body problem

Toi = Voi + V0iGo(E)To;

/ o

(A+1)-body propagator
The simplest approximation is

Go(F) ~ go(E)

but there Is not an intermediate one

Inclusion of medium effects

 Work has been done to include these effects at a
mean-field level [Chinn et al., PRC 52, 1992 (1995)]

* We can use the SCGF to calculate the many-body
propagator and the excitation spectrum



Optical potential for nucleus-nucleus elastic scattering

Mgller factor (AB) __ ,(NN)
tNy = NUNN
It imposes the Lorentz invariance of flux when we pass from Projectile density farget density
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*Calculation performed with
NN and 3N interaction

*Simple one-body equation o3/ 3
*Can be solved easily P ) 004
*Only NN interaction
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Results for elastic a-12C scattering

Interesting results despite the
approximations!
The optical potential seems too absorptive -5 12C(*He,*He)'*C

173 MeV

How can we decrease the absorption?

* Inclusion of medium effects

CIO'el/dURuth

* Introducing the energy dependence of
the t matrix in the double-folding integral

tNN(qv K7 Pv Qv@‘ _ I(::(%ETI* 0.5




Summary & outlook

M The choice of the NN interaction is crucial to define the energy limits of
applicability of the optical potential

M The combination of MST and SCGF looks promising for future calculations
heavy systems

M Achieved a first step in the derivation of a nucleus-nucleus optical potential

] Extend the high- and low-energy limits of applicability of the optical potential
[J Consistent treatment of the full 3N interaction
[J Reducing the absorption in the nucleus-nucleus optical potential



