

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

From Vision to Seeing: Tracing brief history of positron emission tomography in BC and Canada.

> Thomas J. Ruth, PhD | Senior Research Scientist , Emeritus| TRIUMF/BC Cancer Agency

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiannes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Disclosure:

I serve on the Scientific AdvisoryBoard for α9oncologyDisclosure

Outline

- History leading to FDG PET
- FDG PET
- BC and Canada's involvement
- TRIUMF/UBC Neuroscience Program
- BC Cancer establishing clinical PET
- Future of PET Scanning in Canada
- New Directions in cancer treatment
- Personalized Medicine
- Future of TRIUMF Isotope Program

- 1950s Brownell & Sweet at Harvard
- 1950s/60s Hospital based cyclotron production of H₂¹⁵O, Ter Pogossian, Wash. U.
- 1960s ¹¹C-chemistry, Wolf team at BNL
- 1960s ¹⁴C-deoxyglucose, Sokoloff, NIH
- 1960s/70s Kuhl & Edwards, MkIV camera
- 1970s Phelps & Hoffmann, PET scanner, Wash. U.
- 1970s ¹⁸F-fluorodeoxyglucose, Wolf, Fowler, Ido
- 1970s 1st FDG scan, Reivich, Kuhl, PENN
- 1980 NIH funded 10 sites for NeuroPET

Fluorodeoxyglucose (FDG)

Glucose

FDG scan on MkIV – Kuhl, et al.

PET @ UBC/TRIUMF circa 1980

- Pat McGeer, Brian Pate, Bernie Reidel, Laurie Hall
- Building infrastructure:
 - CP-42 Beam Line
 - PETTVI Scanner
 - Pipeline

PETTVI Dedication 1982

That's Brian on the right!

The Team

(*circa 1981*) 11

Production of Radionuclides: True Alchemy

In short:

¹⁴N(p, α)¹¹C t¹/₂ = 20.3 min.

¹⁸O(p,n)¹⁸F $t^{1/2} = 109.7$ min.

⁶⁴Ni(p,n)⁶⁴Cu $t^{1/2} = 12.7$ h

¹⁶O(p, α)¹³N t¹/₂ = 9.97 min.

 $t\frac{1}{2}$ is the period during which half of the radioisotopes decay.

Pipeline 1983

Pion Therapy @ TRIUMF

- A common neurodegenerative disorder
- Loss of dopamine neurons and nerve terminal causing loss of motor skills and speech
- Most common form of treatment is with L-dopa which is transformed into dopamine in the body

Donald B Calne 1981

¹⁸F-Fluorodopa PET Scan

Normal

Parkinson's Disease

UBC/TRIUMF PET Program

In the 1980's a designer drug with a small contaminant (MPTP) causing Parkinsonian symptoms was sold to several to drug users.

Normal Progression vs MPTP Exposure

Pre- transplant

1 yr after

2yrs after

4 donor- group

1-donor group

placebo

Pacific Parkinson's Research Centre

- Goals:
 - Determine the origins of PD
 - -Follow natural history of disease (Progression)
 - Develop treatments
 - -Control complications of treatment

A. Jon Stoessl - Director

Radiopharmaceuticals

- Dopamine system
 - ¹⁸F-FDOPA
 - -¹¹C-Methylphenidate
 - -¹¹C-Dihydrotetrabenazine
 - -¹¹C-Raclopride

ETRIUMF

In vivo assessment of endogenous DA concentration

ONE OR TWO PILLS?

higher dopamine concentration

What have we learned about Parkinson's Disease thus far?

- Preclinical changes in PET indices.
- Asymptomatic patients progress to disease.
- Early signs of compensation.
- Singular events can cause parkinsonism.
- Evidence of our *Event* hypothesis including progression.

Even with accurate PET measures with today's tracers we are still looking at the consequence of disease.

We need access to the disease process itself.

- The tracers we presently use *look* at the system response to disease.
- What we need are tracers that *look* at the disease process itself.
- We need to get closer to the *action*!
- This will provide the basis for personalized medicine.

PETTVI Scanner

PETTVI – FDG image

PETTVI:

4 detector rings separated by septa: 7 imaging planes In plane spatial resolution 9.2 cm Axial slice width: 11.6 mm Slice – to –slice distance: 14.4 mm Sensitivity < 0.5% It wobbled!

1st and Last Scans on the PETTVI

ECAT 953B, Ruth, Miller, Gardner

ECAT 953B Scanner

Paul Kinahan, UBC MSc student developed first 3D reconstruction code

Early 3D Scans – ECAT 953

Screenshot from ECAT 953B

High Resolution Research Tomograph

- 119,000 detector elements
- 4,000,000,000 lines of response
- > 1Gbyte of data per image frame

FDG Images from the HRRT

Axial

Coronal

Sagittal

microPET

10 April 2003

- 32 detector modules (8x8)
- 1920 individual LSO elements
- ring diameter 17.2 cm
- 10 cm transaxial FOV
- 1.8 cm axial FOV
- volume resolution ~ 8 mL
- sensitivity: 200 cps/μCi
- cost ~ \$ 450K USD

- From the very beginning we validated the tracers we used
- We calibrated the scanners so that the regions of interest could be viewed as Bq/cm³
- With modelling the results could be interpreted with quantitative biological metrics

WAT in lesioned rat (comparing postmortem to Binding Potential (PET))

¹¹C-DTBZ (rat)

¹¹C-raclopride in same rat.

Additional Questions for PET:

- New drugs for diabetes
- Spinal cord research
- Enzymology
- The mouse genome and knock in/out models
- Learning
- Dyskinesia
- Cancer research

Hybrid PET/MR scanner: – data can be acquired simultaneously, ideal to investigate several aspects of brain connectivity

RIUMF Multimodal imaging PET/MRI at UBC: applications

+ Algorithms development

©TRIUMF Collaborations Beyond UBC/TRIUMF PET: ¹⁸F & FDG Supply

RIUMF The Centre of Excellence for Functional Cancer Imaging

Phase A – Clinical PET/CT

Phase B

- Cyclotron
- Radiopharmacy

61 yo female NSCLC pre-operative staging

Clinical PET Scanner

Public PET Cameras

https://www.triumf.ca/sites/default/files/TRIUMF-AAPS

-Martinuk-PET-Across-Canada-REPORT.pdf

^{®TRIUMF} Tracer selection Important: ¹⁸F-FDG Compared with ⁶⁸Ga-PSMA-11

Will Trace developments combined with genomics provide Personalized Medicine?

Brain

Lymph System

Nervous System

2025-2030: Applying Physics to Life

T. I. Kostelnik, C. Orvig *Chem. Rev.* **2019**, *119*, 902 invited for **Metals in Medicine** issue P Pouget et al. Nat. Rev. Clin. Oncol. 2011, 8, 720-734

Combining Diagnoses and Therapy: Theranostics

Theranostic Chemical Construct

Chemotherapy (Goserelin + Docetaxel + Denosumab)

В

PSA: 25.4 ng/ml

PSA: 20.4 ng/ml

Lu-177 PSMA (2 cycles) + enzalutamide

С

PSA: <0.01 ng/ml

Radiol. Imaging Cancer. (2023); 5:e220157.

Institute for Advanced Medical Isotopes

IAMI

- BC Provincial Health Authority will be placing 2nd cyclotron in facility; additional lab space to support expanding provincial PET program
- Additional funding requests continue in discussion with provincial funding ministries

NFRF-Transformation: Rare Isotopes to Transform Cancer Therapy

\$23.7 M over 6 years

- NPI: Bénard (UBC/BC Cancer)
- Co-PI: Ramogida (SFU/TRIUMF)

TRIUMF Team: Hoehr, Radchenko, Schaffer, Yang

RIUMF We face an enormous challenges with these projects

But the view will be stunning!

Acknowledgements

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McMaster | McGill | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's |

Simon Fraser | Toronto | Victoria | Winnipeg | York

Thank you! Merci!

Background Radiation

Average population exposure – 2.8 mSv/year

This can vary significantly depending upon life style and living location.

RIUMF

Loss of Life Expectancy Due to Various Risk - Days

- Being unmarried male 3500 Motor vehicle accidents 207
- Smoking 2250
- Heart diseases 2100
- Being unmarried female 1600
- Coal Miner 1100
- Cancer 980
- Being poor 700
- Stroke 520
- All accidents 435

- Home accidents 95
- Safest jobs 30
- Bicycle 5
- All catastrophes combined-3.5
- <u>PET scan 1 hour</u>
- Smoking 1 cigarette 10 min.
- Pap test (- 4 days)
- Air bags (- 50 days)