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Scope of this talk

▪ Discuss photodetector R&D at the device level

▪ VUV-SiPMs for nEXO and other particle physics experiments

▪ Work being done at TRIUMF, impact on experiments and technology 
transfer

▪ Work loosely grouped into TRL categories of ‘emerging,’ ‘prototyping,’ 
‘integration’
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Silicon photomultipliers

▪ Array of SPAD pixels
▪ Compact, robust, insensitive to magnetic fields, fast timing
▪ Easier to produce large photosensitive area than using PMTs
▪ Cons: dark count, crosstalk
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VUV-SiPMs for particle physics
▪ nEXO will use 4.5m2 of 

SiPMs to detect LXe 
scintillation light

▪ FBK and Hamamatsu 
(candidate vendors for 
nEXO) have developed 
VUV SiPMs for nEXO – 
this was needed for the 
experiment to work

▪ Development is ongoing 
and driven by the needs 
of experiments (eg tsv’s 
for nEXO)

▪ 30m2 for Darkside-20K, 
Argo may use 200m2(!)

FBK

Hamamatsu
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Characterization at TRIUMF
• First step to incorporating devices 

in an experiment is characterizing 
the basic parameters - PDE, DCR, 
afterpulsing

• Devices meet fundamental nEXO 
requirements – shows feasibility

• Also necessary to understand the 
challenges of integrating devices 
into a detector

• Developing protocols for mass 
testing
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Understanding pathologies - external crosstalk
▪ SPAD avalanches emit photons
▪ SiPMs triggering each other leads to ‘external crosstalk’ and degrades energy resolution

▪ Not good! Effect needs 
to be well quantified

▪ Can be empirically 
studied using LolX 
detector at McGill
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Secondary emission
▪ Measurements of spectrum/number 

of photons emitted during avalanche 
using MIEL setup at TRIUMF

▪ nEXO candidate devices measured for 
direct input to detector simulations

▪ Work ongoing to measure emission 
from individual SPADs in a digital 
SiPM, aiding understanding of 
emission mechanisms

▪ Can then contribute to future device 
design – enabling future technological 
improvements through study of a 
specific detector pathology
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Modelling PDE
▪ Predicting crosstalk 

now requires 
understanding 
device response at 
secondary emission 
wavelengths

▪ Modelling PDE lets 
us extrapolate to 
wavelengths we 
can’t measure

▪ Also provides 
details on device 
structure

PDE for FBK VUV-HD3 device

Wavelength [nm]
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Modelling optics
▪ Optical transmission 

into device is not 
simple!

▪ Passivation layer 
thickness, 
interference, shape of 
the device 
microstructure play a 
role

▪ Angular dependence 
is important for 
detector simulations

Angle (deg)

Losses due to 
microstructure 
shadowing in 
VUV4

Interference 
oscillations in 
FBK device 9
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Technology transfer – device modelling for 
design of a unity-PDE SPAD
▪ Several avenues for improving SPAD 

efficiency – antireflection coatings 
can be produced with close to 0 
reflectivity at certain wavelengths

▪ Controlling region thicknesses and 
electric field profile can also 
maximize PDE while keeping DCR 
low

▪ Probably possible to produce a 
100% PDE silicon SPAD with the 
right design choices
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High efficiency SPADs for quantum applications
▪ Quantum computing requires very high PDE and single-photon 

resolution at high photon numbers -> currently need SNSPDs to 
do this

▪ An ultra-high PDE SPAD would enable quantum computing at 
high(er) temperatures (the Xanadu quantum computer currently 
only uses dilution fridge temps for the single photon detectors)

▪ Could also 
permit high 
rate QKD 
systems!!
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Quantum yield
▪ ‘Quantum yield’ is the number 

of carrier pairs produced by a 
single photon absorption – 
increases above 1 at high 
energies

▪ Understanding needed for 
detector event reconstruction 
– but applicable to a range of 
deep UV detection 
applications

▪ Also applicable for detection 
of dark photons and design of 
VUV photodetectors
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Mass testing

▪ Operation of >40k SiPMs over 10 years 
requires in-depth understanding of 
reliability and pathologies

▪ Development underway to produce fast 
and effective diagnostics

▪ Much of this will be transferable –
▪ Extraction of device parameters from IV 

rather than waveform-level 
measurements

▪ Determining whether high-temperature 
performance can reliably infer low-
temperature performance

▪ Darkside is using a ‘goodness of fit’ 
parameter to a reference IV – we hope 
to be able to improve on this

Figures from DarkSide testing – thanks Giacomo ☺ 13
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Digital SiPMs
▪ Individual SPAD 

readout and 
control 

▪ Potential for 
spatial resolution 
and deactivation 
of faulty/high DCR 
SPADs

▪ Could be used to 
mitigate radiation 
damage
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Summary

▪ nEXO and other particle physics experiments have motivated a 
significant R&D push in SiPM technology, in industrial and 
academic settings

▪ This enables better physics detectors now and better technology 
available for designing future detectors

▪ It also results in better understanding of SPAD operation and 
feeds back in to improved photodetectors for a wide range of 
applications
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Follow us @TRIUMFLab
www.triumf.ca

Thank you
Merci



MIEL
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The MIEL Experiment
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MIEL
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FBK Reflected Light 
and Laser Spot

2D Emission Map
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VERA
Vacuum Efficiency, Reflectivity, and Absorption

▪ Vacuum chamber to allow transmission of VUV light

▪ Deuterium light source with emission from VUV to NIR (140-830nm), 
wavelength controlled with vacuum monochromator

▪ Control of various parameters: Temperature, light source, optical angle of 
incidence

▪ Digitizer used for waveform-level measurements – allows pulse counting and 
determination of photon detection rates

Lamp

Cooling lines

Equipment flanges
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