5
o~

TRIUMF

Early Photon
Detector R&D for
Particle Physics and
Beyond

Harry Lewis, PHORVWARD group
TRIUM Science Week 2024

2024-07-25

Discovery,

accelerated



Scope of this talk

= Discuss photodetector R&D at the device level
= VUV-SIPMs for nEXO and other particle physics experiments

= Work being done at TRIUMF, impact on experiments and technology
transfer

= \WWork loosely grouped into TRL categories of ‘emerging,” ‘prototyping,’
‘integration’



Silicon photomultipliers

Single photon ZZ Single photon

Electron @ P-type
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= Avalanchee o multiplication

approx. 1x multiplication approx. 1000000x multiplication
Possibility of noise causing inability to correctly detect photon Correctly detects photon entry. More accurate information
entry, resulting in reduced accuracy. received per photon due to multiplication.
CMOS sensor SPAD sensor

= Array of SPAD pixels

= Compact, robust, insensitive to magnetic fields, fast timing

= Easierto produce large photosensitive area than using PMTs
Cons: dark count, crosstalk



emerging

VUV-SIPMs for particle physics

= nEXO will use 4.5m? of
SiPMs to detect LXe
scintillation light

= FBK and Hamamatsu
(candidate vendors for
nEXQO) have developed
VUV SiPMs for nEXO -
this was needed for the
experiment to work

= Development is ongoing

and driven by the needs
of experiments (eg tsv’s
for nEXQO)

= 30m? for Darkside-20K,
Argo may use 200m>?(!)

FBK —

Hamamatsu
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emerging

Characterization at TRIUMF
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prototyping

Understanding pathologies - external crosstalk

= SPAD avalanches emit photons
= SiPMs triggering each other leads to ‘external crosstalk’ and degrades energy resolution

p

‘physics’
photon in

= Not good! Effect needs
to be well quantified

= Can be empirically
studied using LolX
detector at McGill
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Diagram of eXT occurring between two
SiPMs. Yrdesignates charge avalanche
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prototyping

Modelling PDE

= Predicting crosstalk
NOW requires
understanding
device response at
secondary emission
wavelengths

= Modelling PDE lets
us extrapolate to
wavelengths we
can’t measure

= Also provides
details on device
structure
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p rOtOtypi ng Losses due to Average, scaled to zero, loss from Equation (1 - egn/data)
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emerging

Technology transfer — device modelling for

design of a unity-PDE SPAD

= Several avenues for improving SPAD
efficiency — antireflection coatings
can be produced with closeto 0
reflectivity at certain wavelengths

= Controlling region thicknesses and
electric field profile can also
maximize PDE while keeping DCR
low

= Probably possible to produce a
100% PDE silicon SPAD with the
right design choices

carrier concentration [cm's]

2
=

=
Y

-k
=

—_
o
=]

10°

sio,

o
+ +

T LT L L e e L L B L)

00 05 10 15

depth [um]

-ﬁ; 'E“ Y ha B ™ = =)
E-field [V/m]

- = —
'Em ﬂu

o
b

10

combined e-h ATP

ie



emerging

High efficiency SPADs for qguantum applications

= Quantum computing requires very high PDE and single-photon
(rjesohlgtion at high photon numbers -> currently need SNSPDs to
o this

= An ultra-high PDE SPAD would enable quantum computing at
high(er) temperatures (the Xanadu quantum computer currently
only uses dilution fridge temps for the single photon detectors)

= Could also b . (S Transmiter
permit high o &?CM
rate QKD Q QL & %\gyf\(\
systems!! S . i‘\b§§
EE \,Q\\/ o
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Quantum yield

= ‘Quantum yield’ is the number
of carrier pairs produced by a
single photon absorption -
Increases above 1 at high
energies

= Understanding needed for
detector event reconstruction
— but applicable to a range of
deep UV detection
applications

= Also applicable for detection
of dark photons and design of
VUV photodetectors
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GOF=<20

integration _ GOF>20

1076

Darkside is using a ‘soodness of fit’
parameter to a reference IV —we hope
to be able to improve on this
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emerging

Digital SiPMs

= |ndividual SPAD ) ) N Phton-to-gital onvertrs -

readout and SPAD Array SPAD Array SPAD Array
control

= Potential for
spatial resolution
and deactivation
of faulty/high DCR
SPADs

= Could be used to | | ..

mitigate radiation

2 x Optical fibers

damage

Power Cu cables

Universite de

Sherbrooke




Summary

= nEXO and other particle physics experiments have motivated a
significant R&D push in SiPM technology, in industrial and
academic settings

= This enables better physics detectors now and better technology
available for designing future detectors

= [t also results in better understanding of SPAD operation and
feeds back in to improved photodetectors for a wide range of
applications
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MIEL

Microscope for the Injection and Emission of Light
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Cryogenically Cooled X-Y Stage with SiPM
Mounted
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The MIEL Experiment
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VERA

Vacuum Efficiency, Reflectivity, and Absorption

= Vacuum chamber to allow transmission of VUV light

3. Manual slits
6. Parabolic
= Deuterium light source with emission from VUV to NIR (140-830nm), mirror 2 Monochromator
wavelength controlled with vacuum monochromator
= Control of various parameters: Temperature, light source, optical angle of " ‘
(HHe)

= Digitizer used for waveform-level measurements — allows pulse counting and
determination of photon detection rates

Lamp

. gt ﬂl [lO.Samplewluel
Cooling lines ' e B '

13. Liquid Nitrogen cooler
14. Turbo vacuum pump
15, Pressure gauge

Equipment flanges
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