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Intro

The ALPHA-g experiment at CERN aims to - ‘{ Helix Fit

perform the first-ever direct measurement WL /T IEk TN i function™

of the effect of gravity on antimatter, W |

determining its weight to within 1% | S

precision. Antiprotons annihilate on the || - | o
trap wall and the annihilation products are T C0%0 geonstuetion /
detected by the rTPC. We are working on £k | .

a new deep learning method based on Ifa g T = — PointNet

PointNet to predict the position at which : B @'ﬂiﬁi‘." "

the annihilation happens and aim to
Improve upon the standard approach to
annihilation position reconstruction.

Methods Results Next Steps
1. Adapt PointNet model architecture to The main results so far on simulation “ Work on reproducibility and publication
do regression instead of classification compared the conventional method are: " Test on real data
2. Get 2.2 million simulated events " Improved resolution along z-axis = Extend to predicting x and y
3. Preprocess data (e.g. subtract mean) - o dent bi
mproved z-dependent bias o -
4. Train model to learn 7 vertex P P Improve model (Point Transformer?)
5. Use new, unseen data to make sure However, the standard method has been " Explore other tasks such as uncertainty
the model generalizes well Improving in the meantime as well estimation or track segmentation
How good are the predictions? How does z-resolution vary across the detector?
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How does z-bias vary throughout the detector? How strong is the evidence that the z-bias is zero?
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The dataset used for the visualizations above contains 130k events that were not used for model training or selection

Discovery,
accelerated




