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Introduction to the Study α-Quartz on a Microscopic Level 8Li+ Mechanism of  Diffusion

§ Quartz, α-SiO2, a common oxide insulator, has important 
applications based on its piezoelectric properties.

§ Applications include the development of novel battery materials, 
improvement of ultrasonic transducers or chemical sensors.

§ Here, we study the site and dynamics of isolated implanted 8Li+
ions in an artificial quartz crystal.

§ 8Li+, a radioactive isotope made of 3 protons and 5 neutrons, is 
used in this ß-NMR experiment as a probe as it is the longest-lived 
unstable isotope of lithium with a half-life of 0.848 s.

§ Monitoring the asymmetry of 8Li+’s parity violating beta-decay as a 
function of temperature, one can measure the nuclear magnetic 
resonance of the implanted ion and its spin-lattice relaxation.

§ Conclusions can then be made upon structure and function of the 
ion’s diffusion.

§ We find remarkably fast spin relaxation with
a strong temperature dependence below 

300 K which may be due to surprisingly fast
diffusion at low temperatures.

§ Quartz is a low energy, relatively low symmetry crystal comprised 
of a 3D network of silicon-oxygen tetrahedrons forming a crystal 
lattice. 

§ The tetrahedrons are corner-shared, linked together by oxygens.

§ There are two long silicon-oxygen polar covalent 
bonds and two shorter ones. 

§ There are 3 formula units of SiO2 within the trapezoidal 
unit cell. 

§ The full crystal structure is a repetition of the unit cell.

§ The point group is P3221 or P3121 depending on the handedness.

Technique of  ß-NMR C-Axis Channel in α-Quartz Current Inquiries 
§ A highly spin polarized beam of our isotope, 8Li+, is directed to an 

8X10 mm sample of artificially grown quartz. 

§ After implantation of 8Li+, the isotope stops in the lowest potential 
energy site and potentially diffuses through the sample if the 
temperature and material permits. 

§ A radioactive weak, parity violating, beta decay follows. 

§ A signal is given from the high energy electrons emitted hitting 
the forward and backward scintillation detectors in a spectrometer. 

§ This tells us about the spin relaxation of 8Li+ and thus the local 
magnetic and electronic environment of the material. 

§ The twisting and turning of the silicon-oxygen tetrahedrons 
create helical channels parallel to the c-axis. 

§ The large centre channel in this figure is thought to be the only 
one that can comfortably accommodate guest ions in quartz.

§ Our goal of this study is to elucidate fundamental aspects of 
the mobility of lithium ions in the dilute limit of α-quartz.

§ 8Li+’s diffusion in the c-axis channel is confined to 1D and is 
anisotropic.

§ We may find impurities that replace the Si atoms in the quartz 
structure such as H or Al.

§ Looking forward, we seek to understand unexplained trends in 
our data.

§ The peak of the lithium’s diffusive mobility and thus the fastest 
spin relaxation occurs at 100 K, 
a highly unexpected result as this is far below room 
temperature.

§ Another observation in the data is that there appears to be two 
speeds of diffusion which is quite perplexing. 

§ A potential explanation includes relating the fast component to 
the formation of Li0 which is a neutral 
Li atom that would be present in the quartz lattice instead of 
the expected 8Li+.

§ The Li0 contains an unpaired electron which produces a large 
magnetic field on the Li nucleus.

§ Where is the lithium ion’s lowest potential energy site situated?

§ If 8Li+’s nearby atoms are repelling it, the energy cost will be too 
great and it will migrate to a lower energy site.

§ It is hypothesized that 8Li+ will sit in a 4-fold  coordinated state 
within the large c-axis channel  bound to the 4 nearest oxygen atoms. 

§ There are three 2-fold axes located a third apart running through 
the silicon atoms across the channel from one another.

§ We propose there is one lithium site per two-fold axis, located a 1/3 
of a c-axis lattice constant away from each other within the c-axis 
channel. This indicates there are 3 sites per unit cell. 

Proposal of  8Li+ Site in α-Quartz8Li+ ß-NMR Data References 

§ The spin relaxation data for 
an array of oxide insulators. 

§ The relationship between 
spin relaxation and 
temperature in quartz. 
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