

Let BOIS Steer the Beam: Bayesian Optimization for Ion Steering

E. Ghelfi^{1,2}, A. Katrusiak^{1,3}, O. Hassan^{1,4}, R. Baartman^{1,4}, W. Fedorko¹, O. Kester^{1,4}, O. Shelbaya¹ ¹TRIUMF, Vancouver, Canada ² University of Edinburgh, United Kingdom ³ Queens University ⁴ University of Victoria

The centroid correction problem

Fig. 2: 2 rms x envelope of an example beam transport. Top shows the designed behavior of the beam, bottom shows the same optics settings with a perturbed beam entering the lattice. Made using TRANSOPTR [4]

A simplified beam transport problem consists of lenses, apertures and drift spaces. In an ideal system linear segments are free of misalignments.

However, when a misalignment is introduced, it propagates downstream through the optics (fig. 2) \rightarrow corrective steerers.

Bayesian Optimization (BO)

Black-box optimization algorithm for expensive and noisy systems.

Fig. 3: A toy 1D problem and two consecutive optimization steps with BO. Consider an unknown objective function (noisy red) and some known data samples (blue dots). BO builds an acquisition function α (green) to sample it further and creates a probabilistic model (blue line and shaded area).

Values of d steerers $x^* = \operatorname{argmax}_{x \in \chi^d} f(x)$ Downstream FC current

Models the unknown function with mathematical surrogate (prior), usually a Gaussian Process.

Acquisition function to select the next sampling point, balancing *exploitation* of the expected maxima, and exploration in areas of higher uncertainty:

mean deviation

from neutral

(mrad)

an

- Order of beam divergence
- More useful input scape

Results

Beam transported through 30 meters of beamline:

0.4

0.2

-1.0

From the mass separator through the low-energy transport section and polarizer at ISAC-I,

-0.5

p=0.125

o=0.25

0.5

p=0.5 p=1

0.0

- Offline Ion Source (OLIS) beam through the RFQ and accelerated into the MEBT section.
- All methods shown to be effective as operators, in terms of transmission and time.
- boundBOIS reduces mean abs final steering angle by a factor of 0.2, and scale+boundBOIS by 0.4.

		Progress for IOS:FC6 to ILT:FC49, Beta=3.0, Elements:10									
Transmission, %	100 -	(b)									Sectio
	80 -										IMS:14 (a
	60 -										IMS:14 (a
	40			-			-*- initial sam	ampling - s	pling - scaled		IMS:34 (
	20 -						 initial sampling - truth optimzing - truth 				ILE2:1 (c
	υլ	Ó	20	30	40	60 Iteration	80	100	110		ILE2:11 (c

Magnetostatics and wider facility
 deployment
 Discovery,

accelerated