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1.MOTIVATION

In the ATLAS calorimeter, 2 primary types of particle shower are being observed:
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o EM showers: Originate from €*, y interactions and 7° decays. These showers are all similar — Well-calibrated in the calorimeter.

o0 Hadronic showers: Originate from s*, p, n, ... decays and interactions. Each of these showers is unique, i.e. huge resolution penalty from

LAr hadronic end-cap and
forward calorimeters

variations — Much more difficult to calibrate.
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e Calorimeter is crucial for trigger system — Essential to accurately characterize the calorimeter response to both 7° and z*, since Muon Muon chambers  Solenold magnet | Transion radiafon facker

System Semiconductor fracker

pions are the most abundant particle produced in collisions |
LO Trigger System Inner Tracker

e Previous studies [1-2] showed machine learning improves calorimeter calibration and classification »
Global Trigger Central Trigger Event Filter ; Data
e (alibration also affect the online trigger — Many events recorded with <100% efficiency, difficult to be used in physics analysis EYent Eroganses e Qe
. . . . . . . . Calorimeter
e Can machine learning be applied in the L0 global trigger event processor for pions calibration?
Rate 40 MHz » 1 MHz » 100 kHz — > 10kHz

2.PROPO S AL % TopoClustering algorithm [3] in global trigger splits between

local signal maxima in calorimeter
e Given only ~10 ps of latency in the L0 event processor, we propose to “hide” the DeepSets machine learning algorithm under the
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3.0PTIMIZATION
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% DeepSets neural network consists of 3 stages and requires no

e Trade-off study with MC simulation shows using small # of nodes (especially in @ function) while allowing more hidden layers in

explicit calculations between neighbouring cells

the DeepSets can still on average give better prediction and achieve better resolution & Training details
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Fig 1: Prediction vs true cluster energy in MC using (left) the default energy; (right) the DeepSets neural network. Red and blue line indicate median and l¢

response of test data.

4 NEURAL NETWORK BEHAVIOUR

Vector Norm for each ® layer in EMB1

e Probe neural network behaviour by studying 1-cell cluster inputs T Regression Oitpuit from Simulated Data: (EMB)
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6.CONCLUSION

e Convert trained DeepSets e e Problem trying to solve:
model to VHDL for FPGA his 4 ml ’ o Improve calorimeter calibration for online trigger during the High-Luminosity LHC
* Study precision and e Why ML?
quantization in FPGA for Lol y . , L. L
DeepSets / ' /@—’w o ML methods performs better than current algorithms in pion classification and energy
= u‘f ;I S FPGA calibration

Network /|  Model
etwor ode e Challenges ahead:

o To be run in FPGA in the LO global trigger under the shadow of the current topocluster
algorithm
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o Need neural network to recognize electronic noise to prevent over-prediction at low



