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1.MOTIVATION
● In the ATLAS calorimeter, 2 primary types of particle shower are being observed:

○ EM showers: Originate from e±, γ interactions and 𝜋0 decays. These showers are all similar → Well-calibrated in the calorimeter.

○ Hadronic showers: Originate from 𝜋±, p, n, … decays and interactions. Each of these showers is unique, i.e. huge resolution penalty from 

variations → Much more difficult to calibrate.

● Calorimeter is crucial for trigger system → Essential to accurately characterize the calorimeter response to both 𝜋0 and 𝜋±, since 

pions are the most abundant particle produced in collisions

● Previous studies [1-2] showed machine learning improves calorimeter calibration and classification

● Calibration also affect the online trigger → Many events recorded with <100% efficiency, difficult to be used in physics analysis

● Can machine learning be applied in the L0 global trigger event processor for pions calibration?

● Given only ~10 μs of latency in the L0 event processor, we propose to “hide” the DeepSets machine learning algorithm under the 

current topoclustering algorithm:

2.PROPOSAL

3.OPTIMIZATION

4.NEURAL NETWORK BEHAVIOUR

● Need to study exact latency and resource usage for each step on the FPGA in the event processor.
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❖ TopoClustering algorithm [3] in global trigger splits between 

local signal maxima in calorimeter

5.NEXT STEPS 6.CONCLUSION

❖ DeepSets neural network consists of 3 stages and requires no 

explicit calculations between neighbouring cells
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● Trade-off study with MC simulation shows using small # of nodes (especially in 𝚽 function) while allowing more hidden layers in 

the DeepSets can still on average give better prediction and achieve better resolution

● Probe neural network behaviour by studying 1-cell cluster inputs 

with model above

● Implication:

○ Latent space dimension are not fully utilized. Information are encoded 

in length of a few vector components. 

→ Possible to further reduce # nodes in DeepSets and reduce resource 

usage

○ Plateau in low energy in full network energy output coincides with 

electronic noise level in sub-detectors.

→ Possible explanation for over-prediction for <200 MeV in Fig 1 after 

fitting

Fig 1: Prediction vs true cluster energy in MC using (left) the default energy; (right) the DeepSets neural network. Red and blue line indicate median and 1𝝈 

response of test data.

❖ Training details:
➢ ~18M clusters of 

both 𝝅0 & 𝝅± labels
➢ Epochs: 100
➢ Learning rate: 0.001 

(min: 0.00001)
➢ Batch size: 4096

❖ Model details:
➢ 𝚽 nodes: 64
➢ 𝚽 layers: 5
➢ 𝑭 nodes: 64
➢ 𝑭 layers: 5

Type 1 = 𝝅± 

Type 0 = 𝝅0

Fig 2: Input energy of the 1-cell cluster vs regressed energy, classification prediction 

from the trained model, (unnormalized) vector norm in hidden layers, and length of 

vector component.

● Convert trained DeepSets 
model to VHDL for FPGA

● Study precision and 
quantization in FPGA for 
DeepSets

● Problem trying to solve:
○ Improve calorimeter calibration for online trigger during the High-Luminosity LHC

● Why ML?
○ ML methods performs better than current algorithms in pion classification and energy 

calibration 

● Challenges ahead:
○ To be run in FPGA in the L0 global trigger under the shadow of the current topocluster 

algorithm

○ Strict requirement on latency and limitation of resource to implement the DeepSets neural 

network, requiring to minimize the size of latent space

○ Need neural network to recognize electronic noise to prevent over-prediction at low 

energy
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