Simulating High Energy Particle Calorimeter Interactions Using 4-
2 TRIUME Partite Quantum-Assisted Variational Autoencoders
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/.- A four-partite Restricted Boltzmann Machine (RBM),
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includes a bias, and connections are defined by weights,
enhancing the model's ability to learn data patterns.
As an energy based model, the RBM energy is defined by:
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with the possibility distribution for a specific state:

e Current techniques for Calorimeter shower simulation are
computationally expensive 1

e Development of faster, computationally cheaper detector P(z) = EE—E(::)? where Z = ) e P
simulation techniques required for HL-LHC x
o x10% Quantum Annealing
—A(s)
—B(s)
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Methodology

entanglement. Through quantum annealing, couplers and
biases entangle the qubits, creating a complex entangled
state representing multiple potential solutions. As annealing
concludes, qubits settle into a classical state, embodying
the problem's lowest energy configuration. Here is the
Hamiltonian during quantum annealing process:

Step 1: Train a model in ~ days Step 2: Generate Data in ~ ms
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e We have shown that it is possible to utilize the Quantum
Processing Unit for generating Restricted Boltzmann Machine
samples, which facilitate the generation of particle showers.
e Quantum Processing Unit sampling offers the potential to go
significantly faster than traditional Monte Carlo methods,
maintaining high-quality shower image generation. L
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[1] https://docs.dwavesys.com/docs/latest/c_gs_2.html
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