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What properties does a system need to be considered a quantum sensor?

(1) The quantum system has discrete, resolvable energy levels.

(2) It must be possible to initialize the quantum system into a well-known
state and to read out its state.

(3) The quantum system can be coherently manipulated, typically by
time-dependent fields.

(4) The quantum system interacts with a relevant physical quantity, such
as an electric or magnetic field.

C.L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017)



(1) The quantum system has discrete, resolvable energy levels.
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(1) The quantum system has discrete, resolvable energy levels.
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(2) It must be possible to initialize the quantum system into a well-known
state and to read out its state.
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(3) The quantum system can be coherently manipulated,
dependent fields.
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(4) The guantum system interacts with a relevant physical quantity, such as
an electric or magnetic field.
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Magnetic Field

(4) The gquantum system interacts with a relevant physical quantity, such as
an electric or magnetic field.
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Depth-Resolved
Measurements with B-NMR
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Material Effects on Electron-Capture Decay in Cryogenic Sensors
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Several current searches for physics beyond the standard model are based on measuring the electron-
capture (EC) decay of radionuclides implanted into cryogenic high-resolution sensors. The sensitivity of
these experiments has already reached the level where systematic effects related to atomic state energy
changes from the host material are a limiting factor. One example is a neutrino mass study based on the
nuclear EC decay of "Be to "Li inside cryogenic Ta-based sensors. To understand the material effects at
the required level, we use density-functional theory to model the electronic structure of lithium atoms in
different atomic environments of the polyerystalline Ta absorber film. The calculations reveal that the Li 1s
binding energies can vary by more than 2 eV due to insertion at different lattice sites, at grain boundaries,
in disordered Ta, and in the vicinity of various impurities. However, the total range of Li ls shifts does
not exceed 4 eV, even for extreme amorphous disorder. Furthermore, when investigating the effects on
the Li 2s levels, we find broadening of more than 5 eV due to hybndization with the Ta band structure.
Material effects are shown to contribute significantly to peak broadening in Ta-based sensors that are used
to search for physics beyond the standard model in the EC decay of "Be, but they do not explain the full
extent of observed broadening. Understanding these in-medium effects will be required for current- and
future-generation experiments that observe low-energy radiation from the EC decay of implanted isotopes
to evaluate potential limitations on the measurement sensitivity.

(b)
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FIG. 2. (a) Bulk Ta has a bee crystal structure, which is comprised of two intertwined simple cubic lattices, where the corner of one
cube is the body center of the other. There are six octahedral interstitial sites per unit cell, which lie at the centers of each face and
edge of the cubes; several representative sites are indicated by the small magenta balls. Bee Ta with (b) one, (c) two, and (d) three
clustered Li interstitials are favorable structures, with the associated local lattice distortions shown. (Only portions of the computational
supercells are shown for clarty.)

FIG. 6. Representative structures containing an O impurity
near implanted Li, showing the local lattice distortions. (a) Li
and O on neighboring substitutional sites, (0.1.1.5), or row 23
in Fig. 5; (b) Li and O on neighboring interstitial sites, (O, 1.i.1),
or row 18 in Fig. 5; (c) Li interstitial dumbbell with neighbor-
ing O interstitial, (0,1.,2), or row 19 in Fig. 5; (d) Li interstitial
dumbbell with neighboring O interstitial, (O,1,i7.2), or row 21 in
Fig. 5. (Only portions of the computational supercells are shown
for clanty.)



Applications in Non-Quantum Materials: Hydrogen Defects in
Semiconductors
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TRIUMF 20 Year Vision

A world-class accelerator centre driving use-
inspired research - from the life sciences

to quantum and green technologies

Leveraging our unique infrastructure to pursue

research in Canada that will change the world

Green Technologies

Promising research opportunities include
energy production and storage (in
applications for nuclear power, batteries, and
hydrogen storage); efforts to reduce
greenhouse gas emissions; and leveraging of
green chemical processes...

Life Sciences

New research avenues that use our technical
capabilities for groundbreaking biochemistry
applications and the development of
oharmaceuticals will accelerate the
translation from bench to bedside.



Applications in Non-Quantum Materials: Lithium-lon Batteries
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Applications in Non-Quantum Materials: Hydrogen Storage in B-Voltaic

Devices
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Corrected Asymmetry

Applications in Non-Quantum Materials: Tracking Drug Molecules
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LUSR Beamlines




USR Spectrometers

Superconducting Solenoid
70T/z
“He cryostat: 2 — 330 K
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B-NMR Spectrometers

BNMR

e Maximum magnetic field: 9T

* Maximum magnetic field with
RF:6.55T

* Temperature: 4 —320K

Low-field BNQR

Magnetic field: 0 — 24 mT
Normal cryostat: 4 — 320 K
Cryo-oven: 4 —-400 K

Mid-field BNQR

NSERC RTI funded + TRIUMF
contribution

Commissioned 2022
Magnetic field: 0 —0.2T
Cryo-oven: 4 —400 K



Non-Destructive Elemental Analysis with Negative Muons
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