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Score-based diffusion model



Vanilla conditioning

 Conditioning the data distribution alongside the timestep information, at 
each iteration

 A conditional model trained in this way may potentially learn to ignore or 
downplay any given conditioning information, as pointed out by the 
literature

 Training
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Classifier guidance

 The conditional model trained in this way may potentially learn to ignore or 
downplay any given conditioning information

 One additional model for the classifier/predictor that must be trained

 Bayes' rule:
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Approximation of the classifier

 Taylor expansion (linear):

 Training:
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Classifier-free guidance

 Learning two separate models is computationally expensive

 We can learn both the conditional and unconditional models together as a 
unique conditional model

 The unconditional model can be queried by replacing the conditioning 
information, the energy, with fixed constant values, such as zero

 Greater control over the conditional generation procedure while requiring 
nothing beyond the training of a unique model
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One neural network

 One extra label for the unconditional score
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Conclusions

 The diffusion model not only prioritises the conditional score function but 
also moves in the direction away from the unconditional score function

 It reduces the probability of generating samples that do not use 
conditioning information, in favour of the samples that explicitly do

 Effect of decreasing sample diversity at the cost of generating samples that 
accurately match the conditioning information

 This is essentially performing random dropout of the conditioning 
information

 In short, business (almost) as usual!


