% TRIUMF

⁸⁶Kr(α,n)⁸⁹Sr and the Weak rprocess

Cameron Angus CaNPAN 2024

Discovery, accelerate

1

'Main' r-process

- 'rapid' neutron-capture process
- Responsible for producing ~50% of heavier-than-iron elements
- Currently thought to take place in neutron star mergers (GW170817)
- Primary process

The r-process in Ultra Metal Poor stars

- r-process is the dominant source of heavierthan-iron elements at early times
- Abundance predictions can be compared to UMP abundances
- Observations *mostly* in agreement with theoretical r-process abundance predictions

3

Image credit: NASA, ESA, J. Hester, A. Loll (ASU)

Light Element Primary Process

- Predictions for heavy element abundances agree with observations
- Intermediate-mass elements are more abundant than expected (26<Z<45)
- Additional source of nucleosynthesis operating at early times?

Travaglio et al. (2004) ApJ.

The Weak r-process

- Site: Core-collapse Supernovae
- Neutrino-driven winds that drives the shock
 - Neutrinos released from cooling protoneutron star
- Simulations suggest nucleosynthesis viable for A < 130

5

(α,n) reactions

Initially, the ejecta is in nuclear statistical equilibrium

• T = 2 - 5GK

- Pathway close to stability, in contrast to the 'main' r-process
- Most (α,n) reactions on the intermediatemass elements do not have measured cross sections...

Neutron number N

Hauser-Feshbach Predictions

- Nucleosynthesis models rely on Hauser-Feshbach theory for (α,n) cross sections
- Statistical averaging over many energy levels
- Significant uncertainties in abundance predictions arising from choice of α-Optical Model Potential

7

Experiment(s)

Reactions
 ⁸⁶Kr(α,n)⁸⁹Sr
 Studied in 3 parts
 ⁹⁴Sr(α,n)⁹⁷Zr

"affecting many astrophysical abundances under many astrophysical conditions" – Bliss et al. (2020)

- EMMA+TIGRESS at the TRIUMF-ISAC facility
- Inverse Kinematics with novel He-containing targets

He:Si Targets

- Novel target design
- Magnetron-sputtered Si
- Traps pockets of He
- He density ~ 3.3 5.4 \times 10¹⁸ atoms cm⁻²
 - Comparable to windowless gastargets

10

<u>ElectroMagnetic Mass Analyser</u>

- Recoil mass spectrometer
- Separates ions by M/q ratio
- 3 detectors at focal plane
 - PGAC, Ionization Chamber + Si detector
 - PGAC gives position sensitivity

Davids et al. (2019), NIM.A.

<u>Triumf-Isac Gamma-Ray</u> <u>Escape Suppressed</u> <u>Spectrometer</u>

- Gamma-ray detector coupled to EMMA
- 12 HPGe clovers surrounded by BGO scintillators for Compton suppression
- Segmented readouts give high angular resolution

11

Svensson et al. (2005) J. Phys. G. 31, S1663-S1668

EMMA + TIGRESS

- EMMA measures recoiling ⁸⁹Sr ions
- TIGRESS measures gamma rays from reactions
- Coupling allow allow coincidence measurements

12

TIGRESS-EMMA Time of Flight

Results from ⁸⁶Kr(α ,n)⁸⁹Sr – part 1

EMMA Coincident Gamma Ray Energy Spectrum

Results from ⁸⁶Kr(α ,n)⁸⁹Sr – part 1

Partial Cross-Section for the 1032 keV Gamma Ray from 86Kr(a,n)89Sr

Partial Cross-Section for the 1473 keV Gamma Ray from 86Kr(α ,n)89Sr

Future results

- Experiment was repeated with higher beam energy (and current)
- ... and again with both ⁸⁶Kr and ⁹⁴Sr beams
 - Analysis underway by Dr. M.
 Williams (Surrey)

8⁹Sr, $E_x = 1473 \text{ keV}$ ⁸⁹Sr, $E_x = 2079 \text{ keV}$ 3^{30} 3^{30} Sr, $E_x = 1032 \text{ keV}$ 3^{30} Sr, $E_x = 1/2^+_1 \rightarrow 5/2^+_{g.s.}$

Energy [keV]

Mass Gated TIGRESS-EMMA Coincidences

Targets

- Measured scattering with SSBs in target chamber
- Have now tested selfsupported, Au-backed and Albacked

16

Summary

- The weak r-process is a potential source of intermediate-mass elements at early times in the universe
 - (a,n) reactions most important
- Model nucleosynthesis predictions rely on uncertain Hauser-Feshbach calculations for (a,n) reactions
- Partial cross sections measured for ⁸⁶Kr(α,n)⁸⁹Sr using EMMA and TIGRESS at TRIUMF
- Magnetron-sputtered He:Si targets are useful for nuclear astrophysics experiments

M. Williams¹, A. Andreyev², A. Arcones¹¹, S. S. Bhattacharjee³, S. Buck⁴, S. Chakraborty^{1,2}, B. Davids^{1,5}, C. Aa. Diget², D. Galaviz¹², S. Gillespie¹, C. Griffin¹, A. Fernandez⁶, G. Hackman¹, K. Hudson^{1,5}, V. Karayonchev¹, Y. H. Kim⁷, A.M. Laird², A. Lennarz¹, G. Lotay¹³, K. Mashtakov⁴, P. Machule¹, F. Montes^{14,15}, C. Natzke⁸, K. Pak⁷, J. Pereira¹⁴, T. Psaltis⁹, A. Radich⁴, D. Rhodes¹, C. Ruiz¹, A. Simon¹⁶, S. Upadhyayula¹, R. Wadsworth², J. Wiliams¹, D. Yates^{1,10} & T. Zidar⁴.

¹TRIUMF, ²University of York, ³Czech Technical University Prague, ⁴University of Guelph, ⁵Simon Fraser University, ⁶Universidad de Sevilla, ⁷Hanyang University, ⁸Colorado School of Mines, ⁹Technische Universität Darmstadt, ¹⁰University of British Columbia, ¹¹GSI, ¹²Fisica Nuclear Liboa, ¹³University of Surrey, ¹⁴NSCL, ¹⁵Michigan State University, ¹⁶University of Notre Dame.

And thank you to the University of Seville for the targets!

∂ TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated

Spare Slides

Neutrino-driven Winds

$$Y_e = \frac{N_p}{N_p + N_n}$$

- Expected to be proton-rich, but with significant slightly neutron-rich pockets
- (α,n) reactions are most important for driving nucleosynthesis

•
$$T = 2 - 5$$
GK and $Y_e = 0.40 - 0.49$

Wanajo et al., (2018) ApJ.

Magnetron Sputtering

- He plasma forms a torus in the head
- Electric field accelerates He ions into Silicon surface
- Si atoms scattered into chamber
- Si deposits grow as a film on chosen substrate

