

The ²²Ne(α ,n) Reaction at DRAGON

Ben Reed CaNPAN Jam 2024

The r-Process

The **r-process** is expected to produce ~50% of all elements in the galaxy

Rapid neutron capture produce heavy elements far from stability that **beta decay** to stability

Gives rise to the abundance peaks below magic number

There is observational evidence that the rprocess occurs in **neutron star mergers**

There is evidence that there must be **other sites** since:

1. Stars older than neutron stars contain rprocess nuclei

2. Some star have an enhanced abundance of light heavy nuclei

r-process path and corresponding abundance peaks (Grawe, 2007)

Comparison between observation and predictions of abundance of r-process nuclei (Frebel, 2018)

Core-collapse supernovae are another potential site

Nucleosynthesis is driven by the alpha or **weak r-process** producing elements upto Ag via (a,*n*) reactions

A sensitivity study has identified 45 (α ,*n*) reactions which are predicted to be important (Bliss, 2020)

In most cases, **radioactive beam** facilities are required to study these reactions **directly**

Artists impression of a corecollapse supernova

Detecting Neutrons

Since **neutrons** have **no charge**, detecting them proves a challenge

Organic scintillator detectors can be used **identify neutrons** from other events (e.g. γ rays) and provide a **prompt response**

Neutrons will interact with the scintillator material by **scattering of protons**

The recoiling proton will then excite electrons in the material. When electrons de-excite, they will emit light

By **collecting the light** produced, using a **PMT** or **SiPM**, the neutron can be detected

Plastic scintillators (https://eljentechnology.com/)

Pulse Shape Discrimination

Organic Glass Scintillators (OGS)

Developing an array of **OGS detectors** called **DEMAND** (Direct Experimental Measurements of Astrophysical reactions using Neutron Detectors)

A collaboration between TRIUMF, Saint Mary's University and the University of Surrey, funded by UK STFC

OGS detectors made by BlueShift Optics

OGS detectors have excellent **PSD**, light output and timing properties

An OGS cube scintillating under UV radiation

²²Ne(α ,n)²⁵Mg Reaction

As a proof-of-concept experiment, aim to directly study the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction

This reaction is the main **source of neutrons** for the **s-process** in AGB stars

Strong resonances have already been identified in a measurement performed in normal kinematics (Jaeger, 2001)

Resonance at $E_r = 1.43$ MeV has a measured resonance strength of 1.067 eV, making it an ideal test case

Excitation function of the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction (Jaeger,

2001)

Simulation of an AGB star (credit: A. Chiavassa, B. Freytag, M. Schultheis)

Detector Tests

Tests of detector capabilities carried out at the University of Surrey using an **AmBe source**

Tested two methods of light collection – PMT and SiPM

Predicted detector efficiency is 13%

Experiment Setup @ TRIUMF

Beam of 8.14-MeV ²²Ne impinged onto ⁴He windowless gas target

Neutrons detected in an array of **8 OGS detectors**

The **DRAGON spectrometer** was tuned for ²⁵**Mg recoils**, which were be detected using a **DSSD** and pair of **MCPs**

Experiment Setup @ TRIUMF

Beam of 8.14-MeV ²²Ne impinged onto ⁴He windowless gas target

Neutrons detected in an array of 8 OGS detectors

The **DRAGON spectrometer** was tuned for ²⁵**Mg recoils**, which were be detected using a **DSSD** and pair of **MCPs**

Figures courtesy of G. Christian

Saint Mary's University

Preliminary Results: n/γ PSD

Figures courtesy of G. Christian

The **DEMAND** array has been developed to directly study (α, n) reactions in inverse kinematics

A proof-of-principle experiment was carried out to measure the strength of the 1.43-MeV resonance in the ${}^{22}Ne(\alpha, n){}^{25}Mg$ reaction

Results show the **excellent PSD** capabilities of the OGS detectors

Preliminary calculations of the **resonance strength** gives a values that is **close to the literature value**

Improved simulations are required to determine the detection and transport efficiency

Finalise calculations of resonance strength of 1.43 MeV resonance in the ${}^{22}Ne(\alpha, n){}^{25}Mg$ reaction

Perform calculation using **singles data** to verify if array can be used in singles only

Potential future reactions to study:

- The xxx resonance in the ²²Ne(α,n)²⁵Mg reaction as this is predicted to be the dominant resonance
- ⁸⁸Sr(α,n)⁹¹Zr one of the 45 reactions predicted to be important for the week r-process and ⁸⁸Sr is stable
- ⁵⁹Fe(α,n)⁶²Ni the lightest reaction that is important for the week
 r-process

G. Lotay¹, G. Christian², C. Ruiz^{3,4}, A. Lennarz³, G. Bartram¹,
S. Collins⁵, D.T. Doherty¹, J. Henderson¹, D. A. Hutcheon³,
A. Katrusiak³, M. Loria^{3,4}, C. O'Shea¹, C. Paxman¹, P. Regan^{1,5},
L. Wagner³, M. Williams¹

¹ University of Surrey, UK
 ² Saint Mary's University, Canada
 ³ TRIUMF, Canada
 ⁴ University of Victoria, Canada
 ⁵ National Physics Laboratory, UK

Pulse Shape Discrimination

Artists impression of a neutron star merger (Credit: University of Warwick/ Mark Garlick)