Investigating the ${}^{38}K(p,\gamma){}^{39}Ca$ Reaction Rate for Classical Novae

Authors: Manraj Shergill, Dr. Alan Chen

Affiliations: Canadian Nuclear Physics for Astrophysics Network (CaNPAN)

Nova Persei 1901 (Chandra)

Background

- What is a classical nova?
- They are partially responsible for the galactic synthesis of various nuclides
- The structure of these novae are relatively well understood
- There are discrepancies between calculated and observed abundances
- Specifically, Ar and Ca

Goal

- ${}^{38}K(p,\gamma){}^{39}Ca$ could account for these discrepancies
- Significant influence on Ar, Ca and K production
- Update the reaction rate using nucleosynthesis simulations and a new resonance, measured by Liang et al.
- The new resonance was measured at MLL in Munich and TUNL
- Observe the implications of this 'new' reaction rate

Classical Novae Nucleosynthesis

- Nucleosynthesis pathway, endpoint A~40
- Ca-39 decays into K-39 through β^+ decay
- Which can affect Ca-40 through ${}^{39}K(p,\gamma){}^{40}Ca$
- K-38 decays into Ar-38 through β^+ decay

Denissenkov et. al., MNRAS 442 3, 2014

Importance of ${}^{38}K(p,\gamma){}^{39}Ca$

- ${}^{38}K(p,\gamma){}^{39}Ca$ can affect Ar-38 by a factor of 25, K-39 by a factor of 136, Ca-40 by a factor of 58
- Could account for 1/3 of nova-produced Ar
- Could account for all nova-produced Ca

		REACTION RATE MULTIPLIED BY					
REACTION	ISOTOPE <i>i</i>	100	10	2	0.5	0.1	0.01
³⁷ K(p, γ) ³⁸ Ca	³⁷ Ar	0.42	0.79	0.94	1.0	1.0	1.0
	³⁸ Ar	1.4	1.1	1.0	1.0	1.0	1.0
	³⁹ K ⁴⁰ Ca	1.6 1.7	1.3 1.4	1.1 1.1	0.96	0.92	0.90
³⁸ K(p, γ) ³⁹ Ca	³⁸ Ar ³⁹ K	0.057 3.4	0.35 2.6	0.81 1.5	1.1 0.63	1.4 0.19	1.4 0.059
$^{39}K(p,a)^{40}Ca$	⁴⁰ Ca ³⁹ V	2.4	2.0	1.4	0.66	0.20	0.042
$\mathbf{K}(\mathbf{p},\gamma)^{n}\mathbf{Ca}$	⁴⁰ Ca	2.4	2.2	1.4	0.66	0.19	0.026

(Iliadis et al., 2002)

Previous Research

- E_x refers to the excitation energy
 - Energy required to transition an atom from its ground state to an excited state
- E_r refers to the resonance energy
 - The energy at which a reaction is most likely to occur
- $\omega\gamma$ refers to resonance strength
 - The measure of the probability of a specific nuclear reaction occurring at a particular energy level

Ref.	E_{x} (keV)	E_{r} (keV)	$\omega \gamma \text{ (meV)}$
	6157(10)	386(10)	≤2.54
Christian <i>et al</i> .	6286(10)	515(10)	≤18.4
	6450(2)	679(2)	120(25)
	6154(5)	383(5)	≤2.6
Setoodehnia et al.	6286(10)	515(10)	≼18.4
	6472.2(24)	701.3(25)	126(39)
	6156.7(16)	386(2)	≤2.54
Hall <i>et al</i> .	6269.3(22)	498(2)	2.47-24.7
	6471.4(19)	701(2)	126(39)

		Cases	Er (keV)	$\omega\gamma~({ m meV})$
			386	2.54
L	Jodates	Case 1	515	18.4
			679	120
•	A new resonance with E_r = 675 keV with		675	120
	an unknown resonance strength		386	0.254
		Case 2	515	1.84
•	5 different cases to see the effect of this new resonance		679	120
			675	120
	Christian at al. and Cataodahnia at al		386	0.254
•	Christian et al. and Seloodennia et al.	Case 3	515	1.84
	both used DRAGON		679	120
			675	1200
•	Hall et al. used unobserved γ -ray		222	
	transitions for ${}^{40}Ca({}^{3}He,\alpha\gamma){}^{39}Ca$	0	386	0.0254
		Case 4	515	0.184
			679	120
			075	1200
			386	0.0254
		Case 5	515	0.184
			675	120
			701	126

Methods

- Find the Gamow window and peak
- Use Quantum Mechanical Selection Rules to find spin parities
- Calculate the reaction rate
- Use the CaNPAN simulations to observe elemental abundances

Nova Cygni 1992 (F. Paresce, R. Jedrzejewski (STScI) NASA/ESA) ³⁹Ca Energy Levels

Results

- The reaction rate was calculated using the formula: $N_A \langle \sigma v \rangle_r = \frac{1.5399 \times 10^{11}}{\mu T_9^{3/2}} \times \sum_i (\omega \gamma)_i \exp\left(\frac{-11.605E_i}{T_9}\right)$
- Simulations used an oxygen-neon nova model
- White dwarf has a mass of $1.3M_{\odot}$, with initial central temp. of 7 MK
- Peak temperature around 436 MK

Elemental Abundances

- Case 1 has the highest impact on Ca-40 and K-39 abundances
- Ca-40 differs by a factor of 5.4
- K-39 differs by a factor of 9.2
- Case 5 has the highest impact on Ar-38 abundances
- Ar-38 differs by a factor of 3.7
- But the lowest on Ca-40 and K-39

Cases	Ca-40 Abundances	K-39 Abundances	Ar-38 Abundances
Default Case	0.003	0.009	0.03
Case 1	0.0065	0.024	0.0095
Case 2	0.0031	0.0091	0.027
Case 3	0.0039	0.010	0.025
Case 4	0.0028	0.0057	0.031
Case 5	0.0012	0.0026	0.035

Conclusion

- There are significant discrepancies between observed and predictions for Ca and Ar in Nova ejecta
- An updated reaction rate for ${}^{38}K(p,\gamma){}^{39}Ca$ could account for these discrepancies over the nova temperature ~0.1-0.4 GK
- More experiments on the ${}^{38}K(p,\gamma){}^{39}Ca$ reaction rate are needed, specifically at DRAGON
- Studying these reaction rates sheds light on the formation of elements, energy production in stars, and serves as a basis for comprehending the intricate processes of stellar evolution

References

Christian, G., G. Lotay, Ruiz, C., Akers, C., Burke, D. G., Catford, W. N., Chen, A., Connolly, D., Davids, B., Fallis, J., Hager, U., Hutcheon, D. A., Mahl, A., Rojas, A., & Sun, X. (2018). Direct measurement of astrophysically important resonances in K38(p,γ)Ca39. *Physical Review C*, 97(2). <u>https://doi.org/10.1103/physrevc.97.025802</u>

Hall, M. R., Bardayan, D. W., Baugher, T., A. Lepailleur, Pain, S. D., Ratkiewicz, A., Ahn, S., Allen, J., Anderson, J., Ayangeakaa, A. D., Blackmon, J. C., Burcher, S., Carpenter, M. P., S. M, Chae, K. Y., Chipps, K. A., Cizewski, J. A., Febbraro, M., Hall, O., & Hu, J. (2020). γ -ray spectroscopy of astrophysically important states in Ca39. *Physical Review C*, *101*(1). <u>https://doi.org/10.1103/physrevc.101.015804</u>

Setoodehnia, K., Marshall, C., Kelley, J. H., Liang, J. F., Federico Portillo Chaves, & Longland, R. (2018). Excited states of Ca39 and their significance in nova nucleosynthesis. *Physical Review C*, *98*(5). <u>https://doi.org/10.1103/physrevc.98.055804</u>

Iliadis, C., Champagne, A., Jose, J., Sumner Starrfield, & Tupper, P. (2002). The Effects of Thermonuclear Reaction-Rate Variations on Nova Nucleosynthesis: A Sensitivity Study. *the Astrophysical Journal. Supplement Series*, *142*(1), 105–137. https://doi.org/10.1086/341400

Iliadis, Christian. (2015). Nuclear physics of stars: Second Edition. 10.1002/9783527692668.