

University of Victoria

Illuminating Nuclear Physics Uncertainties in Astrophysics With CaNPAN Tools

Mallory Loria University of Victoria/TRIUMF 05/01/24

Classical Presolar **CaNPAN** Novae Grains Tools

Classical Novae

- Explosive events where a white dwarf (WD) accretes material from a low-mass, main-sequence companion (Chomiuk+ 21)
- One of the most common types of explosions in our galaxy (20 – 70 per year)
 - Important to study because they offer insights into explosive nucleosynthesis processes that we can then study in the laboratory (Lovely+ 21)

Nova models for heavy element production

- Performed multi-zone post-processing nucleosynthesis simulations (NuGrid MPPNP) on five Modules for Experiments in Stellar Astrophysics (MESA) nova models
- Gathered abundances from nine observed novae that report Ca abundance

The hotter and more extreme the nova, the greater the production of heavy elements!

Table 1: MESA nova model parameters, similar to Denissenkov+ 14

Ca overabundance in observed novae

 $[X_i/X_H] = \log_{10}(X_i/X_H)_{nova} - \log_{10}(X_i/X_H)_{\odot}$

Ca overabundance in observed novae

 $[X_i/X_H] = \log_{10}(X_i/X_H)_{nova} - \log_{10}(X_i/X_H)_{\odot}$

What causes this discrepancy?

- Could it be the nuclear physics uncertainties in our models?
 - Certain reactions are not well studied thus the uncertainties in their rates are large
- Performed Monte Carlo (MC) simulations of single-zone post-processing (NuGrid PPN) nucleosynthesis that vary nuclear reaction rates by a factor of 10 up and down

- (p, γ), (p, α), (α, γ), (α, p)
- ³³Cl to ⁴¹Cl and up to ³⁸Ti to ⁴⁶Ti
- Calculate Pearson correlation coefficients to get the important reactions for element production

1	H	³⁸ ∏i ₂₽	³⁹ Ті _{β+}	⁴⁰ Τί _{β+}	⁴¹ Τί ^{β+}	⁴² Τί _{β*}	⁴³ Τί _{β*}	44 Ti e- capture	⁴⁵ Τί _{β+}	⁴⁶ Ti _{Stable}
		³⁷ Sc	³⁸ Sc	³⁹ Sc	⁴⁰ Sc _{β+}	⁴¹ Sc _{β+}	⁴² Sc _{β+}	⁴³ Sc _{β+}	⁴⁴ Sc _{β+}	⁴⁵ Sc Stable
1		³⁶ Са _{β+}	³⁷ Са _{β+}	³⁸ Са _{β+}	³⁹ Са _{β+}	⁴⁰ Са 2β+	41Ca e- capture	⁴² Ca _{Stable}	⁴³ Ca _{Stable}	⁴⁴ Ca _{Stable}
		³⁵ Κ ^{β+}	³⁶ Κ _{β+}	³⁷ Κ _{β+}	³⁸ Κ ^{β+}	39K Stable	⁴⁰ Κ β-	41 K Stable	⁴² Κ β-	⁴³ Κ β-
		³⁴ Ar _{β+}	³⁵ Αr _{β+}	³⁶ Αr _{2β+}	37 Ar e- capture	³⁸ Ar _{Stable}	³⁹ Ar	40 Ar Stable	⁴¹ Αr β-	⁴² Ar β-
	l	³³ СІ _{β+}	³⁴ CΙ _{β+}	35CI Stable	³⁶ CI β-	37CI Stable	38 CI	³⁹ Cl ₽-	⁴⁰ СІ _{β-}	⁴¹ Cl β-
						N				•

Impact of varied nuclear reaction rates on Ca production

- ³⁹K(p, γ)⁴⁰Ca and ³⁸K(p, γ)³⁹Ca identified as the most correlated to the production of Ca in *all* nova models
- ${}^{39}K(p, \gamma){}^{40}Ca$ rate increased by a factor of 13 (Fox+ 24)
- Changed only reaction rate of ³⁹K(p, γ)⁴⁰Ca by a factor of 10 for our hottest nova model → minimal increase in Ca

NUCLEAR PHYSICS UNCERTAINTIES CANNOT ACCOUNT FOR THIS DISCREPANCY

Max Planck Institute for Chemistry

Presolar Grains

- Specs of interstellar dust formed by stars that died before the solar system formed (Clayton & Nittler 2004)
 - Typically formed in asymptotic giant branch (AGB) stars and corecollapse supernovae (CCSNe) (Pignatari+ 2018, Lugaro+ 2018)
 - They are important to study because their isotopic abundances can tell us about the nucleosynthesis of their parent star

n-process

Core Collapse Supernovae: ${}^{22}Ne(\alpha,n){}^{25}Mg$

(Pignatari + 2018)

⁹² Τс	⁹³ Τс	⁹⁴ Τc	⁹⁵ Τс	⁹⁶ Τс	97 Tc	⁹⁸ Тс	⁹⁹ Τc	¹⁰⁰ Тс	¹⁰¹ Тс	¹⁰² Τc	¹⁰³ Τс
_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	e- capture	_{β-}	_{β-}	_{β-}	_{β-}	_{β-}	_{β-}
⁹¹ Μο	⁹² Μο	93 Mo	94 Mo	95 Mo	96 Mo	97 Mo	⁹⁸ Μο	⁹⁹ Μο	¹⁰⁰ Μο	¹⁰¹ Μο	¹⁰² Μο
_{β+}	_{2β+}	e- capture	_{Stable}	_{Stable}	_{Stable}	_{Stable}	2β-	_{β-}	_{2β-}	_{β-}	_{β-}
⁹⁰ Νb	91 Nb	⁹² Νb	93Nb	⁹⁴ Nb	⁹⁵ Νb	⁹⁶ Νb	⁹⁷ Νb	⁹⁸ Νb	⁹⁹ Νb	¹⁰⁰ Nb	¹⁰¹ Nb
_{β+}	e- capture	_{β+}	_{Stable}	β-	_{β-}	β-	β-	β-	_{β-}	β-	β-
⁸⁹ Ζr	90 Zr	91 Zr	92 <mark>Zr</mark>	⁹³ Ζr	⁹⁴ Zr	⁹⁵ Ζr	⁹⁶ Ζr	⁹⁷ Ζr	⁹⁸ Ζr	⁹⁹ Zr	¹⁰⁰ Ζr
_{β+}	_{Stable}	_{Stable}	_{Stable}	_{β-}	^{2β-}		^{2β-}	β−	β-	β-	β-
⁸⁸ Υ	89 Y	⁹⁰ Υ	⁹¹ Υ	⁹² Υ	⁹³ Υ	⁹⁴ Υ	⁹⁵ Υ	96 Υ	97 Υ	⁹⁸ Υ	⁹⁹ Υ
_{β+}	Stable	β-	_β .	β·	_β .	β-	^{β-}	β-	β-	β-	β-

SiC grains showing i-process signatures

- 9 grains were identified
 - B. Crompvoets 2021

 Used Zr and Mo → "first peak" elements that are assumed to be produced in the i-process

 Grains are usually diluted 99% to 1% solar material to pre-solar origins

- MC sims varying the (n, γ) reaction rates for constant neutron density PPN runs •
- Variation factors were calculated using Hauser-Feshbach computations

Neutron densities at 99.0% solar dilution

Finding the best fit between observations and models Preliminary: <u>mkloria@uvic.ca</u>

Create χ^2 maps \rightarrow by finding the smallest value of χ^2 between model and observation for a given neutron density and dilution coefficient

Classical Novae Results

 Ca is overabundant in observations of novae compared to our models

• Nuclear physics uncertainties cannot explain these differences

Presolar Grains Results

CaNPAN Tools

- Single-zone postprocessing nucleosynthesis calculations
- Monte Carlo (MC) simulations varying nuclear reaction rates
- Tools used to analyze MC data

 9 SiC grains identified as having iprocess signatures (Crompvoets 2021)

 Possible new way of identifying grains that may originate from iprocess without having to specify the astrophysical scenario