New discoveries with gravitational-wave astrophysics

Jess McIver CanPAN Jam 2024 May 3, 2024

gravitational Waves a new view of the universe

Gravitational waves

Gravitational wave strain, h:

 $h_{ij}(t) \propto \frac{G}{c^4} \frac{d^2 I_{ij}}{dt^2} \frac{1}{r}$

-0.69s

Gravitational wave strain

Induced spacetime strain h(t)

$$h_{ij}(t) \propto \frac{G}{c^4 r} \frac{d^2 I_{ij}}{dt^2}$$

Movie: Carl Rodriguez

Measured spacetime strain h(t)

h(t) =

Current GW detector network (IGWN)

Virgo

Gravitational Wave Observatories

LIGO/Caltech

LIGO India Early construction

KAGRA

A landmark detection

September 14, 2015

Inferring mass and distance

Inference of source properties

d = h + n. $p(\boldsymbol{d}|H_N, S_n(f)) = \exp\sum_{i} \left[-\frac{2|\tilde{d}_i|^2}{TS_n(f_i)} - \frac{1}{2}\log(\pi TS_n(f_i)/2) \right]$ 1.000.75 -Effective inspiral spin $\chi_{\rm eff}$ 0.50 - $GW200210_092254$ GW200105_162426 0.25 -0.00 --0.25 -GW191219_163120 GW200225_060421 -0.50 -GW200115_042309 -0.75 --1.00 – 20102Chirp mass $\mathcal{M}\left[M_{\odot}
ight]$

LIGO/Virgo GWTC-3 (2021)

Data model d = signal (through lens of detector network) h + detector noise n

with Gaussian noise

LIGO/Virgo GWTC-2 (2020)

LIGO/Virgo/Lovelace, Brown, Macleod, McIver, Nitz

Time (seconds)

GWs reveal a new population of stellar remnants!

McIver and Shoemaker, 2021

LIGO-Virgo-KAGRA results

Since 2016: >100 LVK papers > 80,000 citations

Topics include:

- Stellar remnant catalogs
- Tests of general relativity
- Instrumentation
- Noise studies
- Dense matter
- Searches for novel GW sources (lensing, CW, stochastic, CCSN..)
- Independent measurement of H_0

\rightarrow \mathbf{C} pnp.ligo.org/ppcomm/Papers.html

LIGO-Virgo-KAGRA Publications

The LIGO Scientific Collaboration and Virgo collaboration have been co-authoring observational result papers since 2010. Beginning in 2021, the KAGRA Collaboration too is co-authoring observational results from the full O3 run. See break for additional information.

BibTeX file for these papers	Click to toggle do	
Highlighting: Event discoveries	Multi-messenger	

0 0	Ŭ					
Release Date	Title	Keywords (clear filter)	Science Summary	Journal citation	arXiv Preprint	Pub Rep
Apr 17, 2023 * <mark>Recent</mark> *	Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network (by LSC, Virgo and KAGRA)	<u>O3 CBC LVK</u>	summary	Submitted to ApJ	<u>2304.08393</u>	<u>P22</u>
Feb 7, 2023	Open data from the third observing run of LIGO, Virgo, KAGRA and GEO (by LSC, Virgo and KAGRA)	<u>O3 data LVK</u>	<u>summary</u>	Accepted by ApJS	<u>2302.03676</u>	<u>P22</u>
Dec 2, 2022	Search for subsolar-mass black hole binaries in the second part of Advanced LIGO and Virgo's third observing run (by LSC, Virgo, KAGRA, S. Shandera and D. Jeong)	<u>O3 CBC LVK</u>	<u>summary</u>	<u>Monthly Notices</u> of the Royal <u>Astronomical</u> <u>Society, stad588</u> (<u>Accepted</u> <u>Manuscript)</u>	<u>2212.01477</u>	<u>P22</u>
Oct 20, 2022	Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run (by LSC, Virgo and KAGRA)	<u>O3</u> <u>magnetars</u> <u>LVK</u>	<u>summary</u>	Submitted to ApJ	<u>2210.10931</u>	<u>P21</u>

G

Click on any keyword to filter of toggle doi information at keyword

Kai Staats

Advanced LIGO noise

Spectrum: L1:GDS-CALIB_STRAIN,rds 2019-05-30 03:30:00.000 | 1243222218 (360.0), fftlength=10.0, overlap=0.5

Frequency (Hz)

Sensitivity and detection rate

LIGO-Virgo arXiv 1304.0670 v11

O4a:May 24 2023 - Jan 16 2024

O4 expectation: up to a few signals per week

2010 2015 eLIGO

O4 aLIGO improvements

- Upgrade pre-stablized lasers to input100W into the interferometer (for 400 kW in the arm cavities)
- New baffles to combat stray light noise
- Replace some test mass mirrors to improve coatings
- New 300 meter cavity for frequencydependent squeezed light

- Commissioning break Jan April 2024
- O4b: April 10 2024 early 2025 (TBC)
 - LIGO and Virgo

Authenticated as: Jess McIver

LIGO/Virgo/KAGRA Public Alerts

O4 Significant Detection Candidates: 89 (102 Total - 13 Retracted)

O4 Low Significance Detection Candidates: 1782 (Total)

Show All Public Events

Page 1 of 7. next last »

SORT: EVENT ID (A-Z)

Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location	FAR
S240429an	Terrestrial (98%), BNS (2%)	Yes	April 29, 2024 05:23:03 UTC	GCN Circular Query Notices VOE	art 8.4.200 Bit and 8.4 to an ettap of article art art art art art art art art art art art	1 per 11.049 years
S240428dr	BBH (>99%)	Yes	April 28, 2024 22:54:40 UTC	GCN Circular Query Notices VOE	HERE HERE AND	1 per 1.5024e+06 years

04 snapshot

graceb.ligo.org

.

▼

Sensitivity and detection rate

O1, O2, O3 Over 2 years of collective observing time

As the GW detection rate increases, automation will become more important.

Nearly the same number of alert candidates so far in **O4a** (May 24 - Jan 16)!

19

most likely a merger between a Neutron Star & Black Hole (NSBH)

ວ^{iscovered} on 29 May 2023 at 18h15 ປັ

$\sim 1.4 M_{\odot}$

Most symmetric NSBH event so far

more likely than prior GW NSBHs to have the neutron star ripped apart by the black hole

Recent news!

~ 650 million light years away

* Although the KAGRA detector was in observing mode, its sensitivity was insufficient to impact the analysis of GW230529

What else might we detect with current detectors?

McIver and Shoemaker, 2021

The next generation of GW detectors

Dawn IV workshop report (McIver et al, 2019); Cosmic Explorer Astro 2020 decadal submission (Reitze et al 2020); Einstein Telescope Conceptual Design Study (Punturo et al 2020)

Einstein Telescope

- 10 km detectors
- 300 K and < 23 K
- 2 microns
- 200 kg mirrors

Cosmic Explorer 2

- 20-40 km detectors
- · 123 K
- 1-2 microns (?)
- 320 kg mirrors

2040

2035

Cosmic Explorer 1

- 20-40 km detectors **300 K**
- 1-2 microns (?)
- 320 kg mirrors

The next generation GW detectors

40 km

10 km

4 km

aLIGO, A+, A#

Einstein Telescope

Cosmic Explorer

400 thousand

Slide by G. Losurdo

300,000 BNS mergers!

1 merger every 100 seconds!

~5 will have SNR >300, unlocking post merger physics (NS EoS)

Hall and Evans, 2019 CE Horizon Study, CE–P2100003–v7 (2021)

100,000 BBH mergers!

1 merger every 5 minutes! ~8 will be nearby (z<0.1)

with median SNR of 600, up to SNR of ~2500!

25

40km flat laser path

$\Delta z = 0.3 \text{ m}?$

 $\Delta z = 3 \text{ m }?$

40km flat laser path

40km flat laser path

Digging/filling volume

Assuming 4 m platform width and ~10\$/m^{3*}

Analysis and slide by François Schiettekatte, UdeMontreal

* Cosmic Explorer site and infrastructure, Kevin Kuns for the Cosmic Explorer Project (September 2019) CE-G1901564

For each 40 km *arm*: $V = 43\ 000\ x\ 10^3\ m^3\ (\sim 430\ M\$)$

40km flat laser path

Digging/filling volume

Assuming 4 m platform width and ~10\$/m^{3*}

Analysis and slide by François Schiettekatte, UdeMontreal

* Cosmic Explorer site and infrastructure, Kevin Kuns for the Cosmic Explorer Project (September 2019) CE-G1901564

For each 40 km *arm*: $V = 43\ 000\ x\ 10^3\ m^3\ (\sim 430\ M\$)$ Choose a site with concave elevation such that $\Delta z \approx 0$

 $V = 375 \times 10^3 \text{ m}^3 (3-4 \text{ M} \$!!)$

red 300-900 green 900-1400 blue 1400-2000 x 10³ m³

Many locations in Canada!

Analysis by François Schiettekatte, UdeMontreal

All sites overlap with unceded indigenous territories and/or nations.

Based on approach by Kevin Kuns, MIT. This is not a CE Consortium analysis

Cosmic Explorer noise budget

CE Horizon Study, CE–P2100003–v7 (2021)

		Quantity	Units	LIGO A+	CE	
		Arm length	km	4	40	
		Laser wavelength	μm	1	1	
		Arm power	MW	0.8	1.5	
		Squeezed light	dB	6	10	
		Susp. point at 1 Hz	pm/\sqrt{Hz}	10	0.1	
	Test masses	Material		Silica	Silica	
		Mass	kg	40	320	
		Temperature	K	293	293	
	Suspensions	Total length	m	1.6	4	
		Total mass	kg	120	1500	
		Final stage blade		No	Yes	
Ne	wtonian noise	Rayleigh wave suppr.	dB	0	20	
		Body wave suppr.	dB	0	10	
	Optical loss	Arm cavity (round trip)	ppm	75	40	
		SEC (round trip)	ppm	5000	500	
		BNS horizon redshift		0.19	8.3	
		BBH horizon redshift		2.7	41	
		BNS SNR, $z = 0.01$		75	1260	
		BNS warning, $z = 0.01$	min	4	103	

31

GW detector coatings teams in Canada

Bill Baloukas Ludvik Martinu

No.

Martin Chicoine Alexandre Lussier UBC's Stewart Blusson Quantum Matter Institute

Université de Montréal/Polytechnique Montréal

Émile Carl Lalande Lévesque Sjoerd Roorda

Normand François Mousseau

Mechanical microresonators Developing GW detector coatings at SBQMI

Gradient coatings: test different materials on the same chip

Mechanical frequency gradient

Slide by Dr. Kirsty Gardner

MARCAL Gravitational Wave Periods

Milliseconds

Minutes to Hours

Years to Decades

Billions of Years

Pulsar timing

CMB polarization

The LISA mission

LISA discovery space

LISA core team + consortium - 2017

Galaxy formation and evolution

LISA will be able to localize massive BH sources to a few arcminutes at z=1!

S. McWilliams et al. 2011 arXiv 1104.5650

LISA will be able to measure massive BH distance with less than 10% error at z=4!

E. Berti et al. 2005. arXiv 0504017

Experiment/analysis

Jess McIver

Scott Oser

Multi-messenger

Trottier Space Institute at McGill

John Ruan

Nahee Park

Theory

Liliana Caballero

Huan Yang

%TRIUMF

PERIMETER

Saeed Rastgoo

University of Lethbridge

Saurya Das

Get involved with GW physics/astrophysics

Open invitation to join the CITA GW astrophysics focus group (meets weekly on Tuesdays at 3pm Eastern) led by Phil Landry (CITA) - reach out to Phil at plandry@cita.utoronto.ca

Explore the Gravitational Wave Open Science **Centre** (host of LIGO/Virgo data and analysis tutorials/web courses) - <u>gwosc.org</u>

Explore previous LISA Canada workshops - LISA Canada 2021 white paper, Talks on YouTube

Join the **Cosmic Explorer Consortium** - open membership: https://cosmicexplorer.org/

Join the LISA Consortium lisamission.org/signup

Apply to join the LIGO Scientific **Collaboration** - chat with the LSC Deputy Spokesperson (Jess)

We are excited to announce that Dawn VII 2024 will be held in person at the University of British Columbia Wednesday, June 12 – Thursday, June 13, 2024 with satellite meetings on Friday, June 14.

https://dawn7.phas.ubc.ca/

Asst. Prof UBC, CRC T2 in GW atrophys.

Jess

Mclver

Gravitational wave science that our team is excited about:

-30

Continu US waves spinning pulsars

The UBC GW astrophysics team: https://gravitational-waves.phas.ubc.ca/

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENNE POUR L'INNOVATION

New Frontiers in Research Fund Fonds Nouvelles frontières en recherche

Digital Research Alliance of Canada Alliance de recherche **numérique** du Canada

