Gravitational Laboratories for Nuclear Physics

Reed Essick essick@cita.utoronto.ca

The structure of neutron stars provides a unique way to probe two fundamental physical interactions: gravity and the strong nuclear force. I will review our current understanding of the macroscopic properties of neutron stars and discuss associated constraints on microscopic phenomenology, including the presence of strong phase transitions. Time permitting, I will also discuss how well we can distinguish neutron stars from black holes within gravitational-wave signals from coalescing compact binaries.

Understanding EoS Inference

NS Observables: mass

Shapiro delay

NS Observables

NS Observables: mass and radius

NS Observables

NS Observables: mass and tidal deformability

Inference of the NS EoS: systematics from parametric models

Legred+Essick+ (2022)

Current Constraints EoS Inference

Inference of the NS EoS: nonparametric results

Current Theory Agnostic Constraints

maximum central density is likely $\sim 6\rho_{nuc}$

supranuclear sound speed almost certainly exceeds the conformal limit →strongly-coupled interactions

Connections with Low-Density Theory

Inference of the NS EoS: incorporating low-density nuclear theory

Inference of the NS EoS: comparing low-density theories

Inference of the NS EoS: comparing low-density theories

Connections with Low-Density Experiment

Inference of the NS EoS: low-density nuclear experiment

Essick+ (2021) Essick+ (2021)

Connection to "new" experimental probes: Neutron Skin Thickness (R_{skin})

Reed+(2021) infer $L \ge 100$ MeV based on $R_{skin} = 0.29 \pm 0.07$ fm. Suggest this implies $R_{14} \ge 14$ km.

astro data can distinguish between nuclear theories at high densities

nuclear experiments probe lower densities

Inference of the NS EoS: low-density nuclear experiment

Future Prospects

Future Prospects: EoS constraints

nuclear experiment

Future Prospects: EoS constraints

nuclear experiment

Future Prospects: EoS constraints

nuclear experiment

