

Status of the HIAF accelerator complex in China

Lijun Mao and Jiancheng Yang on behalf of the HIAF design group

Institute of Modern Physics, Chinese Academy of Science June 21st, 2024

Outline

- I. General information
- **II.** Challenges on the accelerator design
- **III.** Status of the construction
- **IV. Outlook**

General information

- HIAF (High Intensity heavy-ion Accelerator Facility) is one of the mega-scientific projects under constructed in China
- Mainly designed to provide high energy (~800MeV/u) and high intensity (10¹¹ppp) heavy ion beams (up to U³⁵⁺)
- Civil construction was started in the end of 2018
- Beam commissioning date is December 2025
- Superconducting ECR ions source provides highly charge heavy ions
- CW linac is used as the injector of synchrotron
- The booster is used to accumulated and accelerated ions
- 6 experimental terminals will be constructed for nuclear physics, atomic physics and application studies

General information

Beam parameters, here we selected the uranium as the reference particle

	SECR	iLinac	BRing	HFRS	SRing
Length / circumference (m)		114	569	192	277
Final energy of U (MeV/u)	0.014 (U ³⁵⁺)	17 (U ³⁵⁺)	835 (U ³⁵⁺)	800 (U ⁹²⁺)	800 (U ⁹²⁺)
Max. magnetic rigidity (Tm)			34	25	15
Max. beam intensity of U	50 pμA (U ³⁵⁺)	28 pμA (U ³⁵⁺)	1×10 ¹¹ ppp (U ³⁵⁺)		(2~4)×10 ¹¹ ppp (U ⁹²⁺)
Operation mode	DC	CW or pulse	fast ramping (12T/s, 3Hz)	Momentum- resolution 1100	DC, deceleration
Emittance or Acceptance (H/V, π·mm·mrad, dp/p)		5 / 5	200/100, 0.5%	±30mrad(H)/±15 mrad(V), ±2%	40/40, 1.5% (normal mode)

General information

- As an example, the facility can be used for the predicted nuclei study (mass measurement)
- Bp-defined Isochronous Mass Spectrometry (with a couple of dedicated ToF detectors)
- Three modes with γ =1.43, 1.67 and 1.84, cover the aera of unknow nuclei

- The 4th generation of ECR ion source, provide highly charge U ions with the current about mA
- A CW superconducting linac is designed as the injector of synchrotron
- Two phase painting injection and fast ramping in the booster ring (BRing)

- The 4th generation of ECR ion source, provide highly charge U ions with the current about mA
- A CW superconducting linac is designed as the injector of synchrotron
- Two phase painting injection and fast ramping in the booster ring (BRing)

- The 4th generation of ECR ion source, provide highly charge U ions with the current about mA
- A CW superconducting linac is designed as the injector of synchrotron
- Two phase painting injection and fast ramping in the booster ring (BRing)
- **Superconducting Linac, 2 types of cavities** SECR LEBT RFQ MEBT **QWR007 HWR015** 0.8 MeV/u5.3MeV/u 17MeV/u HWR015 Cavity N=66 QWR067 Cavi N = 30

RFQ is assembling and commissioning in June

Cavities in the cleaning room

- The 4th generation of ECR ion source, provide highly charge U ions with the current about mA
- A CW superconducting linac is designed as the injector of synchrotron
- Two phase painting injection and fast ramping in the booster ring (BRing)
- gain factor ~60 is needed for BRing accumulation

iLinac beam parameters

lon	Ek	ε _{x,y} (RMS)	Δр/р	l _{avg}
238U35+	17MeV/u	1.0 π.mm.mrad	0.2%	1.0 mA

Only horizontal painting:

$$N \le \frac{\varepsilon_A}{1.5\varepsilon_{inj}} = 25$$

Both horizontal and vertical painting:

gain factor ~100

- Power supply for dipole (Full energy storage fast cycling power supply)
- Nanocrystalline soft magnetic alloy loaded cavity
- thin-walled vacuum chamber (Titanium ring supported thin wall vacuum chamber)

□ Status of the HIAF construction

- The civil construction was started in Dec. 2018
- The first dipole of BRing moved to the tunnel in Mar. 2024
- We plan to finish the installation of BRing in the end 2024

G Status of the terminals

- High energy fragment separator (HFRS) and Spectrometer Ring (SRing)
- The day-one experiment is expected in the end of 2025

Conclusion

- The ion source, Linac and BRing installation should be finished in Sep. of 2024
- The test of BRing injection beam is planed to be done before the end of 2024
- The day-one experiment (nuclear exp. with isotopes) will be done in 2025

28-8-

