

News from ANPhA -Nuclear Physics Facilities in Asia-

Byungsik Hong (Korea University)

Chair of Asian Nuclear Physics Association (ANPhA)

https://asiannuclearphysic.wixsite.com/anpha

IUPAP WG9/C12 Annual General Meeting 2024 TRIUMF, Vancouver, Canada, 21 June 2024

Current management (2023-2025)

- Chair: Byungsik Hong (Korea)
- Vice Chairs: A. Thomas, G. Xiao, T. Uesaka
- Secretary: Yongsun Kim (Korea)

Board members (14 member countries/regions)

• Australia: Anthony Thomas (Univ. of Adelaide)

- India: Avinash C. Pandey (IUAC), Sumit Som (VECC), Vandana Nanal (TIFR)
- Japan: Kazuhiro Tanaka (KEK), Atsushi Hosaka (RCNP), Hirokazu Tamura (Tohoku Univ.), Tomohiro Uesaka (RIKEN)

Chair

- Korea: Byungsik Hong (Korea Univ.), Jin-Hee Yoon (Inha Univ.), Eun-Joo Kim (Jeonbuk Nat. Univ.)
- Taiwan: Wen-Chen Chang (Academia Sinica)
- Vietnam: Phan Viet Cuong (VINATOM)
- Myanmar: Nyein Wink Lwin (Univ. of Mandalay)
- Kazakhstan: Kairat A. Kuterbekov (Eurasian Nat. Univ.)
- Hong Kong (China): Jenny Hui Ching Lee
- Mongolia: To be determined
- The Philippines: Denny Lane Sombillo (Univ. of the Philippines)
- Uzbekistan: Bakhadir Irgaziev (National University of Uzbekistan)
- Singapore: Andrew Anthony Bettiol (National University of Singapore)

Observers

 Weiping Liu, Kazuhiro Tanaka, Dong-Pil Min, Yanlin Ye, Hideyuki Sakai, Shoji Nagamiya, Tohru Motobayashi, Marek Lewitowicz (NUPECC)

21-22 June 2024

 Uzbekistan and Singapore joined ANPhA in 2023.

Vice Chairs

■ Previous ANPhA Board Meeting & Symposium, IBS, Daejeon, Korea, 10-11 Nov. 2023

■ Next meeting: SCNT, Huizhou City, Guangdong Province, China, 14-16 Nov. 2024

21-22 June 2024

2024 WG9/C12 AGM @ TRIUMF

- White paper of ANPhA
 - Catalog of the existing and planned accelerator facilities in the Asia-Pacific region
 - https://kds.kek.jp/indico/category/1706/
 - Presently, we are updating the data.
- Long-Range Plan (LRP) Committee
 - Chair: Kazuhiro Tanaka (Japan)
 - Members:
 - Bing Guo (China), Tomohiro Uesaka (Japan),
 Vandana Nanal (India), Yongsun Kim (Korea)
 - More members will be invited.
 - Ex-officio: Byungsik Hong

Overview of ANPhA

- White paper of ANPhA
 - Catalog of the existing and planned accelerator facilities in the Asia-Pacific region
 - <u>https://kds.kek.jp/indico/category/1706/</u>
 - Presently, we are updating the data.
- Long-Range Plan (LRP) Committee
 - Chair: Kazuhiro Tanaka (Japan)
 - Members:
 - Bing Guo (China), Tomohiro Uesaka (Japan),
 Vandana Nanal (India), Yongsun Kim (Korea)
 - More members will be invited.
 - Ex-officio: Byungsik Hong

In this presentation

- I will not cover
 - HIAF (\rightarrow Jiangchen Yang)
 - J-PARC (→ Naohito Saito)
 - RIBF (\rightarrow Hiroyoshi Sakurai)
 - RAON (→ Seung-Woo Hong)
- I will summarize the status of
 - Underground facilities
 - Accelerator facilities except those listed above
 - Activities for LHC
 - Activities for EIC

Yemilab: a new underground laboratory in Korea

- Y2L (700 m deep): Constructed in 2003 to house the KIMS setup for dark matter search experiment
- Yemilab (1,000 m deep): Constructed in 2022 and run by the Center for Underground Physics (CUP) of IBS

Dark matter search

- COSINE-100 experiment @ Y2L
 - DAMA/LIBRA annual modulation of standard halo model was rejected.
- Relocation of COSINE-100: Y2L→Yemilab
- Upgrade COSINE-100 to COSINE-100U
 - Improving the light collection capability by modifying the geometry and PMT attachment method: NIMA 981, 164556 (2020)
 - 21.6±0.6 NPE/keV (30% 个)
 - Commissioning in early 2024

 10^{2}

10

21-22 June 2024

2024 WG9/C12 AGM @ TRIUMF

■ Future experiment: COSINE-200

Aims a world best limit for low-

mass WIMP-proton cross section

• Development of **ultra-low**

background Nal crystals

Cf.) CUPID @ LNGS with 240 kg of ¹⁰⁰Mo

Neutrinoless double beta decay

- AMORE-II experiment @ Yemilab
 - 100 kg of ¹⁰⁰Mo to reach $T_{1/2}^{0\nu\beta\beta} > 4.5 \times 10^{26}$ years for 5 years: both phonons & photons measured by MMC+SQUID
 - So far 300 Li₂¹⁰⁰MoO₄ cylindrical crystals were grown.
 - Commissioning run with 90 crystals in 2024 \Rightarrow Full scale run with 100 kg of ¹⁰⁰Mo is expected in 2026.

Large Neutrino Detector: "Neutrino physics opportunities with the IsoDAR source at Yemilab",

https://www.nevis.columbia.edu/daedalus/exp/isodar.html, PRD 105, 052009 (2022)

- IsoDAR@Yemilab plans to use ~ $10^{23} \bar{v}_e$ s from decay of ⁸Li, bombarding p beams from cyclotron on Be target
 - Sterile neutrino search using the inverse beta decay (IBD) $\bar{\nu}_e p
 ightarrow e^+ n$
 - Nonstandard interaction search using elastic scattering off atomic electrons ($\bar{v}_e e \rightarrow \bar{v}_e e$)
 - Precision test of weak interaction (weak mixing angle) with very short baseline oscillation ($\bar{\nu}_e \rightarrow \bar{\nu}_e$)
 - Search for new particles such as a light X boson, etc.

ANPhA Asian Nuclear Physics Association Underground laboratories

China Jinping Underground Laboratory (CJPL)

China Dark Matter Experiment (CDEX)

Ge to search for light-WIMP: PRL 123, 221301 (2019) PRL 129, 221802 (2022), PRL 129, 221301 (2022)

signal

- CDEX-10 (2016): 10-kg Point Contact Ge detectors immersed into liquid nitrogen • CDEX-50 (in-preparation)
 - CDEX-300 (≳2027) • CDEX-1T
 - Cf.) LEGEND-200 **LEGEND-1000**

Particle and Astrophysical Xenon Experiment (PandaX) Xe to search for dark matter: Nature 618, 47 (2023),

PRL 130, 261001 (2023), PRL 130, 021802 (2023)

- PandaX-II (2014-2019): Dual-phase TPC with half-ton of ultra-high purity liquid ¹³⁶Xe 120 kg in 2014 → 580 kg in 2018
- PandaX-4T (2021-): 5.75 tons of Xe

Cf.) nEXO

2024 WG9/C12 AGM @ TRIUMF

JUNA nuclear astrophysics facility at CJPL

W.P. Liu, et al., Sci. China 59, 5785 (2016)

Experimental conditions for JUNA

Cosmic muon Bkg. (cm ⁻² s ⁻¹)	Be Maximu	Energy		
	H⁺	He⁺	He ²⁺	stability
2×10 ⁻¹⁰	50-400 / 2-10	50-400 / 2-10	100-800 / 1-2	0.04%

List of experiments from the first run (2020-2021)

	Reaction	Crucial parameters	Prior to JUNA	JUNA data	Publication	
	Holy grail $^{12}C(\alpha, \gamma)^{16}O$	Lowest energy (keV)	891	552	In preparation	
		Cross section (b)	10-11	10 ⁻¹²		
	Neutron source ${}^{13}C(\alpha, n){}^{16}O$	Energy range (keV)	230-300	240-1900	120 122701 (2022)	
		s-process	50%	20%	PRL 129, 132701 (2022)	
	²⁶ Al abundance ²⁵ Mg(p, γ) ²⁶ Al	Uncertainty	21%	8%	Science Bulletin 67, 2 (2022) Cover paper	
	F abundance 19 F($p, \alpha \gamma$) 16 O	Lowest energy (keV)	189	72	PRL 127, 152702 (2021)	
		Uncertainty	80%	5%	Editor's suggestion	
	Ne isotope ratio ${}^{18}O(\alpha, \gamma){}^{22}Ne$	Uncertainty	472±18 keV	474.1±1.1 keV	PRL 130, 092701 (2023)	
	CNO breakout ${}^{19}F(p,\gamma){}^{20}Ne$	Lowest energy (keV)	300	200	Nature 610, 656 (2022)	

UPAP NG

Plan for Super JUNA

To cover various nuclear processes in He burning

- Higher intensity: 20 mA
- Higher energy: 800 keV

Research Center for Nuclear Physics (RCNP) @ Osaka Univ. in Japan

- Completion of the upgrade of AVF (Azimuthally-Varying Field) cyclotron
 - Beam delivery started in 2022 with 10 times larger beam intensity
- Independent use of AVF
 - Mass production of short-lived radio isotopes
 - ²¹¹At (Astatine) to clinical trials of targeted alpha therapy
- AVF + Ring cyclotron
 - Precision nuclear physics
 - Promotion of muon science
 - Semiconductor software error evaluation tests

Research center for ELectron PHoton science (ELPH) @ Tohoku Univ. in Japan

New ULQ2 beamline

- e + p with the lowest-ever E_e of 10~50 MeV
- Lowest-ever Q^2 of $10^{-4} \sim 10^{-3} \, (\text{GeV/c})^2$
- Charge radius:

$$\langle r^2 \rangle \equiv -6 \frac{dG_E(Q^2)}{dQ^2} \bigg|_{Q^2 \to 0}$$

with $G_E(Q^2)$ charge form factor

with $G_E(Q^2)$ charge form factor and $Q^2 = 4E_eE_{e'}\sin^2(\theta/2)$

- ELPH is also a hadron-physics facility:
 - Spectrometer for Ultra-Low Q² (ULQ2) electron-scattering experiment
 - Neutral Kaon Spectrometer II (NKS2)
 - Multi-gamma ray detector system (FOREST)

RIB accelerator facilities

CYRIC + ELPH = Research center for Accelerator science and RadioIsotope Science (RARIS): Joint organization from April 2024

21-22 June 2024

2024 WG9/C12 AGM @ TRIUMF

Beijing Radioactive Ion beam Facility (BRIF) @ CIAE in China

Construction started in 2011 Commissioning in 2016 Day-1 experiment in 2018

UP/I

ANPHA Asian Nuclear Physics Association RIB accelerator facilities

Beijing Radioactive Ion beam Facility (BRIF) @ CIAE in China

- Production of fission fragment RIBs (Rb, Sr, etc.)
- Number of RIB types: 24 (2021) → 55 (2022)
- The shortest half-life of RIB with ISOL: 0.45 sec \rightarrow 0.17 sec
- Beam intensity: $10^3 \sim 10^{10}$ pps
- Recent achievements
 - First RIB experiment: 3 β - γ - α exotic decays in ²⁰Na [PRC103, L011301 (2021)]
 - Elastic scattering of the post-accelerated ²¹⁻²³Na beams on ⁴⁰Ca target [NST32, 53 (2021)]
 - Total Absorption Gamma-ray Spectroscopy (TAGS) for ^{88,90}Rb and ^{140,142}Cs using LArge Module BGO Detector Array (LAMBDA)
 - First CLS experiment [NIMA1032, 166622 (2022)]

ANPhA Asian Nuclear Physics Association RIB accelerator facilities

Heavy Ion Research Facility in Lanzhou (HIRFL) @ IMP in China

- Beam species & energies
 - From protons to U
 - From keV to \sim 1 GeV/u
- Main nuclear experiments
 - Spectrometer for Heavy Atom and Nuclear Structure (SHANS) gas-filled recoil separator
 - Double ToF detector for Isochronous Mass Spectrometry (IMS) at CSRe
 - Electron target for Dielectronic
 Recombination (DR) at CSR
 - New isotopes synthesis at China Accelerator Facility for SHE (CAFÉ2) from 2022 with CW-SCL: 4.5~6 MeV/u, 5~10 pµA, and A/Q~3 for Ca~Zn

Heavy-ion collisions at LHC

ALICE: A Large Ion Collider Experiment at LHC, CERN

Asian contribution to detector upgrade during LS2 (2018 \sim 2021)

First Pb-Pb run in RUN3 (Sep.-Oct. 2023)

- ~45 kHz Had. Int. rate
- All 15 detectors included
- Data processing (reconstruction & compression) from 750 GB/s to 186 GB/s fully under control

Heavy-ion collisions at LHC

Collaborative effort between Korea and Japan: KEK Beam test for R&D of ITS3

NPhA

Test chips prepared in Korea & Japan

ITS3 telescope in Korea

EIC-Asia Collaboration

- EIC Users Group
 - 1321 Collaborators
 - 292 Institutions
 - 39 Countries
 (Need to update!)
- Asian fraction
 - Asian fraction: 12% per members/26% per institutions
 - EIC-Asia: China 📒 , India 💶 , Japan 💽 , Korea 💽 , Taiwan 🎽
- Activities
 - Monthly online meeting
 - Workshops
 - ^o NCKU, Taiwan, Jan. 29-31, 2024
 - ^a RIKEN, Japan, Mar. 16-18, 2023
 - NEU, Taiwan, Dec. 9-10, 2022
 - APCTP, Korea, Nov. 2-4, 2022

- EIC hosted at Brookhaven National Laboratory
- 80% polarized electrons from 5-18 GeV
- 70% polarized protons from 40-275 GeV
- Ions from 40-110 GeV/u
- Polarized light ions 40 -184 GeV (He³)
- 100-1000 x HERA luminosities:10³³-10³⁴ cm⁻²s⁻¹
- Center-of-mass energies: \sqrt{s} =29-140 GeV
- CD1 obtained in July 2021
- foreseen to start operation in early 2030's

- eeting
- Physics Goals of EIC
- 3D imaging of protons & nuclei
- Solving the proton spin puzzle
- Search for gluon saturation
- Quark and gluon confinement
- Quarks and gluons in nuclei

2024 WG9/C12 AGM @ TRIUMF

- Several nuclear physics facilities in Asia are in the construction, commissioning, operational or upgrade stage:
 - Underground facilities: SUPL (Australia), CJPL-II (China), Yemilab (Korea)
 - RIB accelerators: BRIF, JUNA/CJPL, HIRFL, HIAF (China), RIBF, RCNP, ELPH & CYRIC/RARIS (Japan), RAON (Korea)
 - Hadron accelerators: HIAF (China), J-PARC (Japan)
 - Photon & electron accelerators: Spring-8, ELPH/RARIS (Japan)
- Significant contributions to the LHC heavy-ion program (ALICE and CMS) from Asia
 - China, India, Japan, Korea, Taiwan, etc.
- EIC-Asia for more effective regional collaboration
- The nuclear physics facilities in Europe, U.S.A., and Asia are complimentary.
- The closer collaborations are not only beneficial to us, but also required for better physics output, which should be a sufficient motivation to work together!