The Scintillating Bubble Chamber

Ken Clark Queen's University

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

<u>Bubble Chambers -</u> <u>Why?</u>

Lots of other good ways to detect dark matter, what advantages do bubble chambers offer?

1. Background control inherent in the detection method

2. Focus can be adjusted with minimal effort

3. Threshold is controllable

4. Inexpensive(-ish)

<u>Bubble Chamber</u> <u>Theory</u>

 At high pressure the medium is stable in the liquid state

Density (arb. units)

<u>Bubble Chamber</u> <u>Theory</u>

• As the pressure is lowered, this becomes metastable, with a potential threshold to overcome before changing state

units) (arb. potential Gibbs

High Pressure

Low Pressure

Density (arb. units)

<u>Bubble Chamber</u> <u>Theory</u>

 The potential step is controllable with pressure (or temperature) providing a variable threshold

units) (arb. potential Gibbs

High Pressure

 μ_{I}

Low Pressure

Density (arb. units)

 $\mu_{\rm v}$

The "traditional" bubble chamber

- Superheated target (C₃F₈, CF₃I...)
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture signals
- Chamber recompresses after each event

The scintillating bubble chamber

- Superheated scintillator (Xe, Ar...)
- Particle interactions nucleate bubbles and cause scintillation
- Cameras and acoustic sensors capture signals, photodetectors collect scintillation light
- Chamber recompresses after each event

Why would we want to do this?

- This is a difficult thing to do
- Lower thresholds are not possible with a traditional chamber
- The superheated scintillator allows this to happen

Energy deposition in C_xF_y

Why would we want to do this?

- This is a difficult thing to do
- Lower thresholds are not possible with a traditional chamber
- The superheated scintillator allows this to happen

Energy deposition in nobles

Queen's

Why would we want to do this?

- This is a difficult thing to do
- Lower thresholds are not possible with a traditional chamber
- The superheated scintillator allows this to happen

What does this gain us?

- Lowering the threshold opens up significant area in the low mass search
- Note this assumes only CEvNS backgrounds and 10kg-year live time

How are we doing this?

- Roughly 10kg of Argon
- SiPMs used for scintillation detection
- Much of the internal detail modelled on PICO 500
- "Only" added challenge is to keep it cold

How are we doing this?

- Roughly 10kg of Argon
- SiPMs used for scintillation detection
- Much of the internal detail modelled on PICO 500
- "Only" added challenge is to keep it cold

Data Collection

14

Data Collection

Scintillation System 32 FBK SiPMs

Data Collection

Collaboration Plan

2) Build and install 2nd detector at SNOLAB for DM search

1) Build and commission detector at Fermilab

3) Upgrade and
—install detector from
1) at a reactor for
CEvNS studies

Instrumentation wiring is complete PV installed in vacuum jacket Cold test on surface

- sneak in some superheating
- Everything looks good, and what we expected

• During the extensive cryogenic testing required at Fermilab, we did

 Now located in the MINOS tunnel, engineering/calibration studies to begin in ~month

MINOS Gas handling Near Detector system

NEXUS

SBC

<u>SNOLAB Progress</u>

- The inner assembly components built
- A fabricator for the pressure vessel and vacuum jacket has been identified, the contract is signed, iterating final design
- Wiring & PLC work has begun

Experiment Status - Shielding

- Extensive effort put into determining shielding necessary to run u/g
- Both neutron and gamma budget being finalized, have guided the path forward for our operations plan
- Shield design through SNOLAB engineering support

	Neutrons		Gammas
	Single Scatters / y	Single Scatters in ROI / y	Single Scatters in ROI / y
Unshield	4009 +/- 771 (Sys.) +/- 41 (Stat.)	3310 +/- 652 (Sys.) +/- 38 (Stat.)	2100
w/ shield	5 +/- 1 (Sys). +/- 2 (Stat.)	5 +/- 1 (Sys). +/- 2 (Stat.)	10 +/- in progress

<u>Conclusion</u>

- SBC continues to make progress, faster than in the past ulletand accelerating all the time
- Operation of the Fermilab chamber will provide proof of threshold, the SNOLAB chamber will proceed quickly
- The next update should continue this positive trend •

K. Clark, A. Wright, B. Broerman A de St Croix, C. Garrah, H. Hawley Herrera, G. Sweeney, E. Wyman, J. Walker, K. Dering, J. Corbett, N. Moss

UNIVERSITY OF

ALBERTA

M.-C. Piro, M. Baker, Y. Ko

R. Castilloux, J. Hall

M. Laurin

P. Giampa

O. Harris

E. Vazquez-Jauregui, E. Alfonso Pita, O. Ivan Valdez Martinez

Collaboration

R. Neilson, N. Lamb, D. Pyda, J. Fritz-Littman

C.E. Dahl, B. Mitra, J. Long, Z. Sheng, E. Rengifo, P. Rodriguez, D. Campos

H. Lippincott, T. Whitis, R. Zhang, L. Joseph

Ψ

INDIANA UNIVERSITY SOUTH BEND

I. Levine, E. Behnke, C. Cripe

S. Priya

PennState

Pacific Northwest NATIONAL LABORATORY

C. Jackson

UC RIVERSIDE

D. Baxter, G. Putnam

S. Westerdale

Canadian & HQP Leadership

SCINTILLATING BUBBLE CHAMBER (SBC)

WBS/Organizational Chart SBC **Scientific Spokesperson** Board Ken Clark **Project Functional Project Office Project Design &** Support Engineering Scheduler – Alex Claveau (SNOLAB) M. Laurin (U de M) Project Lead/Director – Ken Clark (Queen's) Advisor – Pietro Giampa (TRIUMF) K. Dering (Queen's) R. Hupping (SNOLAB) Project Manager – Alex Claveau (SNOLAB) Coordinator – Alex Claveau (SNOLAB) Controller – Roxanne Fournier (SNOLAB) Project Radiation Fluids Detector Instrumentation Management Control TJ Whitis (Unknown) Ken Clark Alex Claveau Eric VJ W/RS Active Fluid Optics ╼ SNOLAB Particulate Hydraulic Pressure SiPMs \rightarrow Reviews Compression Vacuum On-site Acoustics Selection Jacket Fluid Systems Control and Pneumatic Performance Assurance SNOLAB DAQ Cryogenic Department Simulations Calibration

- Canadians hold many leadership positions
- Of particular note, Canadian HQP (non-faculty) lead several of the major components

Revision: C Last Updated: 27JULY2023