Looking for starlight underground

Gonzalo Alonso-Álvarez

ongoing work with David Curtin

How we look for dark matter

How we look for visible matter

Can dark matter shine?

Inelastic dark matter

Toy model: two-level system

Dissipative dark sectors

Simple model with a dark electron and a dark photon Chang et al, [1812.07000]

Compton scattering

Gas fragmentation and formation of compact objects

Atomic dark matter

Dark proton, dark electron, and dark photon **Kaplan et al** [0909.0753]

Dark "brown dwarfs"

Mirror world

image source: Symmetry magazine

Dark Big Bang Nucleosynthesis, fusion-supported stars

Mohapatra & Teplitz [9603049]

Dark photons

May "kinetically mix" with the visible photon

Kinetic terms are not diagonal

Detecting massless dark photons

If dark matter shines in dark photons

Massive dark photons

Mass term for the dark photon -> special direction

Photon - dark photon oscillations (similar to neutrinos)

Massive dark photons in a medium

Effective mass term for the visible photon

Interaction basis

Propagation basis

Two propagating eigenstates:

- Visible photon, $\ell_{\gamma_V} \propto 1/\mathrm{Im}\,(m_{\mathrm{eff}}^2)$
- Sterile photon, $\ell_{\gamma_S} \sim \ell_{\gamma_V} / \epsilon^2$

Massive dark photon absorption

Still some signal after shielding!

Resonant oscillations

Photon-dark photon mixing can be resonantly enhanced

• $m_{\text{eff}}^2 < 0$ in dielectrics: no resonance • $m_{\text{eff}}^2 = \omega_p = \frac{e^2 n_e}{m_e} > 0$ in a conductor: resonance

Longitudinal modes

Conductors support longitudinal photon modes

Plasmon dispersion relation

 $\omega = \omega_p$

Longitudinal dark photons mix with plasmons:

• Resonance at $\omega_{\gamma_D} = \omega_p$

• Enhanced amplitude $\theta_L = \frac{\omega^2}{m^2} \theta_T$ • Enhanced absorption $\Gamma_L \propto \frac{\omega^2}{m^2} \Gamma_T$

Look for longitudinal modes when $m \ll \omega!$

Solar emission of dark photons

Resonant $\gamma \rightarrow \gamma_D$ conversion in the solar plasma

Predominantly in longitudinal modes for $m \ll \omega$

Absorption of solar dark photons

XENON1T S2: limits from **An et al** [2006.13929] SENSEI: own recast of **Adari et al** [2312.13342] XENON1T SE: own recast of **Aprile et al** [2112.12116]

Dark galaxy emission

Details of the spectrum are very model dependent

Parametrized as a black body spectrum

- Temperature T
- Total luminosity L
- Located at the galactic center $d\simeq 8\,{\rm kpc}$
- Equal amount of longitudinal and transverse modes

Total dark photon flux at earth

Absorption of dark starlight

For each m, saturate the limit on ϵ from solar emission As a reference, the Milky Way has $L\sim 10^{10}L_{\odot}$

Resonant conversion

Resonant detector material (i.e. conductor)

Resonant conversion vs absorption

Rates per unit volume

Similar integrated rate, but

absorption is volumetric conversion is at surface

Dark photon telescope

Series of instrumented thin layers of conductor

Pros: Direccionality Narrow frequency response Example: copper

 $\omega_p \sim 10 \,\mathrm{eV}$

 $\ell = 1/\Gamma \lesssim mm$ (ultra pure, cooled)

> Cons: Heat conductivity Readout?

Summing up

• Dissipative dark sectors may be detected by the dark radiation they emit.

 Combine techniques of dark matter direct detection and astronomy:

"Dark astronomy"

Massive photon dispersion relation

Massive photon renormalization factor

Massive photon emission of sun-like star

