Search for ultralight dark matter using superfluid helium mechanical

resonator

McGill Quantum Optics & Sensing Lab

Sarah Rourke

- Tommy Clark
 - Jiaxing Ma
- Fernanda Rodrigues Machado
 - Michael Caouette-Mansour
 - Valeria Mosso
- Cesar Rodriguez Rosenblueth
 - **Jack Sankey**
 - **Brigitte Vachon**
 - Lily Childress Shirin Enger

Collaborators

John Davis (UAlberta, Canada) Swati Singh (UDelaware, USA) Warwick Bowen (Queensland, Australia) Keith Schwab (Caltech, USA) Daniel Grin (Haverford, USA) Mathieu Juan (USherbrooke, Canada)

dark matter

General Ultra-light New Exciting dArk matter Project In Galactic searches

McGill Quantum Optics & Sensing Lab

Sarah Rourke

- Tommy Clark
 - Jiaxing Ma
- Fernanda Rodrigues Machado
 - Michael Caouette-Mansour
 - Valeria Mosso
- Cesar Rodriguez Rosenblueth
 - **Jack Sankey**
 - **Brigitte Vachon**
 - Lily Childress Shirin Enger

Collaborators

John Davis (UAlberta, Canada) Swati Singh (UDelaware, USA) Warwick Bowen (Queensland, Australia) Keith Schwab (Caltech, USA) Daniel Grin (Haverford, USA) Mathieu Juan (USherbrooke, Canada)

Ultralight Dark Matter (UDM)

- Mass scale ~ pico-eV
- Assuming local DM density ~ 0.4 GeV/cm³
 - Large occupation numbers == > boson
 - DM particles behave as a classical field
 - Can be a scalar or vector field

In this presentation, will focus on scalar UDM

Ultralight Dark Matter (UDM)

- Search methods aimed at detecting coherent effects of UDM waves
 - Earth-size wavelength
 - Oscillation frequency ~ kHz

- Virialization
 - 1 ppm energy spread
 - Coherence time ~ 1 hour

D.F. Jackson Kimbal and K. van Bibber (Ed.), Springer International Publishing, April 2022 6

Scalar UDM

Dark matter may modulate the **atomic radius** via variations of "fundamental" constants

Arvanitaki et al. Phys. Rev. Lett. 116 (2016) 031102 Manley et al., Phys. Rev. Lett. 124 (2020) 151301

Scalar UDM But the size of every atom is modulated!

(Simulation!)

Superfluid Helium-4

- Extremely low thermal noise
 - No viscosity
 - High mechanical quality ($Q > 10^8$)

- Liquid at cryogenic temperature
 - Resonator mass can fill any size
 - Resonances swept in situ by fill level or pressurization

Sorongane, OJAppS 12 (2022) 1254

Superfluid "Weber Bar"

2nd mode

Normalized pressure

4th mode

Oscillatory UDM drive

- Same in pipe and helium
- Differential response
 creates pressure wave
- Uniform strain couples only to **breathing modes** (symmetry)

M. Herschel et al., PRD 109 (2024) 095011

Superfluid "Weber Bar"

2nd mode

Normalized pressure

4th mode

Finite-element simulation (COMSOL)

- Works
- Little intuition / guidance
- (So far) one mode at a time
- Slow (costly)

Simple analytical model

M. Herschel et al., PRD 109 (2024) 095011

Simple model for superfluid "Weber bar"

Longitudinal wave equation in **both**

- Light, compressible superfluid
- Heavy, stiff pipe wall
- Rigid end cap mass (boundary)

2nd mode

• Pressure response arises from differential inertia (pipe vs helium)

• Pressure response arises from differential inertia (pipe vs helium)

- Pressure response arises from differential inertia (pipe vs helium)
- Antiresonances from simultaneous drive of multiple modes

- Pressure response arises from differential inertia (pipe vs helium)
- Antiresonances from simultaneous drive of multiple modes

Signal validation! (swept frequency)

10^{-8} 10^{-9} 10^{-10} 10^{-11} 10⁻¹² 10^{-13} 10^{-14} 10^{-15} 10^{-16}

Thermal noise (incoherent)

- Resonant peaks
- No antiresonance

Converting measured signal to strain **Drive = motion / susceptibility**

Converting measured signal to strain

- Drive = motion / susceptibility
- Resonances cancel
- Antiresonances = noise spikes

Compton frequency $\omega_{DM}/2\pi$ [Hz]

Converting measured signal to strain

- Drive = motion / susceptibility
- Resonances cancel
- Antiresonances = noise spikes

Helium ultrallght dark matter Optomechanical Sensor (HeLIOS)

Existing pressure sensor

- 0.3-mm-thick niobium sheet
- Deflection capacitively coupled to superconducting microwave cavity
- Helium thermal noise (fundamental limit) visible only near resonance.

M. Herschel et al., PRD 109 (2024) 095011

Helium ultrallght dark matter Optomechanical Sensor (HeLIOS)

GE0600

EÖT-WASH

AURIGA

M. Herschel et al., PRD 109 (2024) 095011

Goal: Improved readout, broadband sensitivity

Quantum Optics & Sensing Lab (J. Sankey, L. Childress)

Specialized in Quantum Optomechanics 100 Hz - 100 kHz

Fiber optic cavity Membrane

Goal: Improved readout, broadband sensitivity

- Deflection measured with high-finesse
- No cry electronics / GHz coax cables

Noise budget with new pressure readout

- Helium thermal noise (ultimate limit)
- Membrane thermal noise
- Readout quantum (shot) noise
- Quantum back-action

Scalar UDM (expected) sensitivity

- Model quantitatively matches simulation
- World-leading sensitivity within 24h of data taking!

10²

Constant $d_{m_{\rm e}}$

Summary

- Superfluid UDM detector concept
- Cavity-membrane readout for broadband response
- Swept-frequency antiresonance for signal validation
- Simultaneously sensitive to both scalar and vector UDM
- Simple analytical model can be used for detector optimization

Long term vision

• Global network

- Noise rejection
- Directionality

 Scaling beyond "low-cost tabletop" (dreams?)

Team

McGill Quantum Optics & Sensing Lab

Sarah Rourke

- Tommy Clark
 - Jiaxing Ma
- Fernanda Rodrigues Machado
 - Michael Caouette-Mansour
 - Valeria Mosso
- Cesar Rodriguez Rosenblueth
 - **Jack Sankey**
 - Brigitte Vachon Lily Childress Shirin Enger

<u>Collaborators</u>

John Davis (UAlberta, Canada) Swati Singh (UDelaware, USA) Warwick Bowen (Queensland, Australia) Keith Schwab (Caltech, USA) Daniel Grin (Haverford, USA) Mathieu Juan (USherbrooke, Canada)

Parameters used for noise budget

HeLIOS & realistic parameters

Temperature	10 mK
Pipe material	stainless
Pipe length	12.7 cm
Pipe inner diameter	3.79 cm
End cap mass	0.6 kg
Pipe mode Q-factors	10 ⁴
Helium mode Q-factors	10 ⁷
Membrane width	15 mm
Membrane thickness	100 nm
Membrane stress	400 MPa
Membrane mode Q-factors	10 ⁶
Cavity finesse	30,000
Input power	10 microwatts

Vector UDM

Dark matter may also be a <u>vector</u> field that

- accelerates material according to "barion minus lepton"
- number (i.e., A-Z)
- produces differential acoustic signal in composite systems

unitless coupling constant we wish to constrain

materialdependent

Graham et al, Phys. Rev. D 93, 075029 (2016) Manley et al, Phys. Rev. Lett. 126, 061301 (2021)

Vector UDM existing constraints

Mechanical response to vector UDM

Differential acceleration induces "sloshing"

- Couples to <u>odd</u> "sloshing" modes
- Does <u>not</u> couple to even "breathing" modes
- Nonzero susceptibility at low frequency

What Do (We Think) We Know About Dark Matter?

Has a gravitational mass

- Is stable or long-lived
- Must be neutral (to be "dark")
- Is not predominantly made of known Standard Model particles Is predominantly nonrelativistic (cold enough to clump)
- Is distributed in large "halos" around galaxies, far beyond visible matter
- Has local density ~ 0.4 GeV/cm³ (~ 1 hydrogen atom per few cm³)

What Do (We Think) We Know About Dark Matter?

Standard Malo Model (SHM)

- Isotropic velocity distribution (w/r to galactic frame)
- (mostly) virialized.

M. Herschel et al., PRD 109 (2024) 095011

